• Title/Summary/Keyword: resonance measurements

Search Result 403, Processing Time 0.028 seconds

Measurements of $T_1$-and $T_2$-relaxation Time Changes According to the Morphological Characteristics of Gold Nanoparticles (GNPs) (금 나노 입자의 형태적 특성에 따른 $T_1$, $T_2$ 이완 시간의 변화 측정)

  • Jang, M.Y.;Han, Y.H.;Mun, C.W.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • Purpose : The aim of this study is to measure the typical MR variables such as $T_1$- and $T_2$-relaxation times according to morphological characteristics of gold nanopartides as a preliminary study to perform theragnosis using local heating by gold nanopartides. Materials and Methods : Two types of gold nanoparticles were used. Spheres were synthesized by various methods and stirring speed. Rods were synthesized by adding various concentrations of sphere nanopartides. Gold nanopartides were mixed with 2% agarose gel at 1:1 ratio and then signals were acquired using a 1.5T MRI. For the measurements of $T_1$-and $T_2$-relaxation times, TR and TE were varied, respectively. The results were acquired through $T_1$ and $T_2$ curves based on the intensities of MR image using self-developed software. And Statistical analysis was performed. Results : $T_1$ times were measured 1.86 sec and 2.08 sec for sphere and rod, respectively. On the other hands, $T_2$ times were measured 57 ms and 35.45 ms for sphere and rod. Conclusion : The changes of the MR variables according to the morphological characteristics of the gold nanopartides were confirmed. Optimal MR imaging conditions can be obtained by choosing proper TR and TE according to the type of nanoparticles.

High Energy Electron Dosimetry by Alanine/ESR Spectroscopy (Alanine/ESR Spectroscopy에 의한 고에너지 전자선의 선량측정)

  • Chu, Sung-Sil
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 1989
  • Dosimerty based on electron spin resonance (ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to 1 Gy. In water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies $(6\~21MeV)$ and therapeutic dose levels (1~60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by$2\~5\%$ than those calculated by nominal energy $C_E$ factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator.

  • PDF

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

Surface Plasmon Resonance Imaging Analysis of Hexahistidine-tagged Protein on the Gold Thin Film Coated with a Calix Crown Derivative

  • Chung, Bong-Hyun;Baek, Seung-Hak;Shin, Yong-Beom;Kim, Min-Gon;Ro, Hyeon-Su;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.143-146
    • /
    • 2004
  • A surface plasmon resonance (SPR) imaging system was constructed and used to detect the hexahistidine-ubiquitin-tagged human parathyroid hormone fragment (His$\sub$6/-Ub-hPTHF(1-34)) expressed in Escherichia coli. The hexahistidine-specific antibody was immobilized on a thin gold film coated with ProLinker$\^$TM/ B, a novel calixcrown derivative with a bifunctional coupling property that permits efficient immobilizaton of capture proteins on solid matrices. The soluble and insoluble fractions of an E. coli cell lysate were spotted onto the antibody-coated gold chip, which was then washed with buffer (pH 7.4) solution and dried. SPR imaging measurements were carried out to detect the expressed His$\sub$6/-Ub-hPTHF(1-34). There was no discernible protein image in the uninduced cell lysate, indicating that non-specific binding of contaminant proteins did not occur on the gold chip surface. It is expected that the approach used here to detect affinity-tagged recombinant proteins using an SPR imaging technique could be used as a powerful tool for the analyses of a number of proteins in a high-throughput mode.

Development of Inspection System for Transparent Pattern of the Electromagnetic Resonance Pen (전자펜 입력용 투명패턴 검사장치 개발)

  • Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.640-645
    • /
    • 2020
  • To produce an input device stably using the transparent electromagnetic pattern of an electromagnetic induction method, pattern inspection is required in advance in the production process. Various methods of inspecting the capacitive pattern for hand-touch have been proposed, but it is difficult to find the related technical data for the pattern inspection method of the transparent electromagnetic induction method. In this study, to develop an inspection system for a fused electromagnetic resonance pen sensor with a copper-etched metal mesh pattern, an inspection algorithm and method for measuring the antenna impedance inside the sensor was proposed by measuring only the exposed FPCB connector. The proposed method was configured as a control board consisting of a microprocessor that forms a loop between specific channels according to the command of a computer, a computer-controlled by the Windows program, an LCR meter measuring the impedance between specific channels, and transmitting the measurement results back to the computer. An evaluation of the proposed system and measurements of nine specimens showed that it could detect the defects of the sensor used in the actual product.

Enhanced Photo Current in n-ZnO/p-Si Diode Via Embedded Ag Nanoparticles for the Solar Cell Application

  • Ko, Young-Uk;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Yang, Seung-Dong;Kim, Seong-Hyeon;Kim, Jin-Sup;An, Jin-Un;Eom, Ki-Yun;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • In this study, an n-ZnO/p-Si heterojunction diode with embedded Ag nanoparticles was fabricated to investigate the possible improvement of light trapping via the surface plasmon resonance effect for solar cell applications. The Ag nanoparticles were fabricated by the physical sputtering method. The acquired current-voltage curves and optical absorption spectra demonstrated that the application of Ag nanoparticles in the n-ZnO/p-Si interface increased the photo current, particularly in specific wavelength regions. The results indicate that the enhancement of the photo current was caused by the surface plasmon resonance effect generated by the Ag nanoparticles. In addition, minority carrier lifetime measurements showed that the recombination losses caused by the Ag nanoparticles were negligible. These results suggest that the embedding of Ag nanoparticles is a powerful method to improve the performance of n-ZnO/p-Si heterojunction solar cells.

Intra-Rater and Inter-Rater Reliability of Brain Surface Intensity Model (BSIM)-Based Cortical Thickness Analysis Using 3T MRI

  • Jeon, Ji Young;Moon, Won-Jin;Moon, Yeon-Sil;Han, Seol-Heui
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • Purpose: Brain surface intensity model (BSIM)-based cortical thickness analysis does not require complicated 3D segmentation of brain gray/white matters. Instead, this technique uses the local intensity profile to compute cortical thickness. The aim of the present study was to evaluate intra-rater and inter-rater reliability of BSIM-based cortical thickness analysis using images from elderly participants. Materials and Methods: Fifteen healthy elderly participants (ages, 55-84 years) were included in this study. High-resolution 3D T1-spoiled gradient recalled-echo (SPGR) images were obtained using 3T MRI. BSIM-based processing steps included an inhomogeneity correction, intensity normalization, skull stripping, atlas registration, extraction of intensity profiles, and calculation of cortical thickness. Processing steps were automatic, with the exception of semiautomatic skull stripping. Individual cortical thicknesses were compared to a database indicating mean cortical thickness of healthy adults, in order to produce Z-score thinning maps. Intra-class correlation coefficients (ICCs) were calculated in order to evaluate inter-rater and intra-rater reliabilities. Results: ICCs for intra-rater reliability were excellent, ranging from 0.751-0.940 in brain regions except the right occipital, left anterior cingulate, and left and right cerebellum (ICCs = 0.65-0.741). Although ICCs for inter-rater reliability were fair to excellent in most regions, poor inter-rater correlations were observed for the cingulate and occipital regions. Processing time, including manual skull stripping, was $17.07{\pm}3.43min$. Z-score maps for all participants indicated that cortical thicknesses were not significantly different from those in the comparison databases of healthy adults. Conclusion: BSIM-based cortical thickness measurements provide acceptable intra-rater and inter-rater reliability. We therefore suggest BSIM-based cortical thickness analysis as an adjunct clinical tool to detect cortical atrophy.

Experimental Determination of Complex Moduli and Internal Damping of Laminated Composites (적층 복합재료의 내부감쇠와 복소탄성계수 측정에 관한 연구)

  • Lee, Jae-Hyeok;Park, Se-Man;Kim, Hyeong-Sam
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.905-911
    • /
    • 1998
  • Damping is a property for materials and systems to dissipate energy during periodic deformations. Generally, damping causes stiff decrease in amplitudes and shifts in phases. Also, even at resonance, amplitudes are substantially attenuated. This phenomenon of damping helps in reducing stresses developed during vibrations and consequently improves fatigue lives of materials. In this work internal damping and complex moduli are experimentally determined. An impulse technique is utilized in experiments and cantilever beams are selected as test subjects for the measurements of flextural vibrations since the beams lend themselves easily as simplistic ideal models. A resonance method is employed to determine resonance frequencies which are utilized to compute storage moduli. Also, loss moduli are evaluated from damping capacities and storage moduli. The storage and loss moduli combined yield complex moduli. Finally internal damping is evaluated from bandwidth technique, the real component of the transfer function.

  • PDF

A portable surface plasmon resonance sensor system for detection of C-reactive protein using SAM with dimer structure (소형 표면 플라즈몬 공명 센서와 이합체 구조를 가진 SAM을 이용한 CRP 검출)

  • Sin, Eun-Jung;Joung, Eun-Jung;Jo, Jin-Hee;Hwang, Dong-Hwan;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.456-461
    • /
    • 2010
  • The detection of C-reactive protein(CRP) using self-assembled monolayer(SAM) was investigated by a portable surface plasmon resonance(SPR) sensor system. The CRP is a biomarker for the possible cardiovascular disease. The SAM was formed on gold(Au) surface to anchor the monoclonal antibody of CRP(anti-CRP) for detection of CRP. Sequence injection of the anti-CRP and bovine serum albumin(BSA) into the sensor system has been carried out immobilize the antibody and to prevent non-specific binding. The portable SPR system has two flow channels: one for the sample measurements and the other for the reference. The output SPR signal was increased with the injection of the anti-CRP, BSA and CRP due to binding of the proteins on the sensor chip. The valid output SPR signals was linearly related to the critical range of the CRP concentration. The experimental results showed the feasibility of the portable SPR system with newly developed SAM to diagnose a risk of the future cardiovascular events.