• Title/Summary/Keyword: resonance energy

Search Result 890, Processing Time 0.032 seconds

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater Using Energy Dissipation Model (에너지 소산 모델을 이용한 잠수된 가동식 방파제의 유체동역학적 성능 수치해석)

  • Kim, Do-Hyun;Koo, Weon-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.287-295
    • /
    • 2012
  • Hydrodynamic performance of a movable submerged breakwater was analyzed using energy dissipation model. Based on two-dimensional boundary element method the equation of motion including a viscous dissipation term proportional to velocity squared was solved by Newton-Raphson method. Energy dissipation coefficients as well as reflection and transmission coefficients of a submerged flat plate were calculated with various plate lengths and thickness. Both real and imaginary components of body displacement and forces were used to solve the motion of breakwater accurately. The effect of the magnitude of dissipation coefficient on the body displacement was evaluated. The results from the potential theory with no dissipation term were found to be an overestimate in resonance frequency.

Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes (무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

Design and Fabrication of Low Frequency Driven Energy Harvester Using Electromagnetic Conversion

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.143-147
    • /
    • 2013
  • This paper describes a low frequency driven electromagnetic energy harvester (EMEH) which consists of a thin flame resistant (FR-4) planar spring, NdFeB permanent magnets, and a copper coil. The FR-4 spring was fabricated using a desk computer numerical control (CNC) 3D modeling machine. Mathematical modeling and ANSYS finite element analysis (FEA) were used totheoretically investigate the mechanical properties of the spring mass system. The proposed EMEH generates a maximum power of 65.33 ${\mu}W$ at a resonance frequency of 8 Hz with an acceleration of 0.2 g (1 g = 9.8 $m/s^2$) and a superior normalized power density (NPD) of 77 ${\mu}W/cm^3{\cdot}g^2$.

N(2D) Product Velocity Mapped Imaging in the VUV Photolysis of Nitrous Oxide at 118.2 nm

  • Cosofret, Bogdan R.;Lambert, H. Mark;Houston, Paul L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.179-183
    • /
    • 2002
  • Resonance-enhanced multiphoton ionization with time-of-flight product imaging of the $N(^2D)$ atoms has been used to study the $N_2O$ photodissociation at 118.2 nm and the two-photon dissociation at 268.9 nm. These imaging experiments allowed the determination of the total kinetic energy distribution of the $NO(X^2{\prod})$ and $N(^2D_{5/2})$ products. The $NO(X^2{\prod})$ fragments resulting from the photodissociation processes are produced in highly vibrationally excited states. The two-photon photodissociation process yields a broad $NO(X^2{\prod})$ vibrational energy distribution, while the 118.2 nm dissociation appears to produce a vibrational distribution sharply peaked at $NO(X^2{\prod},\;{\nu}=14)$.

Physical Studies of Burnable Absorbers in Hexagonal Fuel Assembly

  • Kim, Taek-Kyum;Kim, Young-Jin;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.15-20
    • /
    • 1996
  • We present the result of physical studies for three integral-type burnable absorbers of gadolinia, erbia and IFBA, in the hexagonal fuel assembly. The analysis of nuclear characteristics for gadolinia and IFBA cases shows that the spectrum hardening of hexagonal fuel assembly compared to rectangular one leads to smaller reactivity hold-down worth(RHW) and less change of MTC in the negative direction per insertion of one burnable absorber rod. Erbia case, on the other hand, exhibits reversed trend in RHW and MTC due to the enhanced absorption of large resonance of Erbium at 0.5 eV It turns out to be that Erbia performs best in terms of minimizing the peak pin power and maintaining as more negative MTC as practically attainable during the entire operational phase, and IFBA provides the least residual reactivity penalty at EOC. Therefore, we take Erbium as the suitable burnable absorber and provide optimal designs of 60, 120, 180, 240 and 300 erbia-shimmed hexagonal fuel assemblies with regard to minimizing the peak pin power.

  • PDF

Investigation of Sensitivity Distribution in THz Metamaterials Using Surface Functionalization

  • Cha, Sung Ho;Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.566-570
    • /
    • 2019
  • To investigate dependence of the sensitivity of THz metamaterials on the position of target dielectric materials, we functionalized the metamaterial gap with an adhesive polymer. A shift in resonance frequency occurs when polystyrene microbeads are deposited in the gap of the metamaterial's metal resonator pattern, while little change is observed when they are deposited on other areas of the metasurface. A two-dimensional mapping of the sensitivity, with a grid size of 1 ㎛, is obtained from a finite-difference time-domain simulation: The frequency shift is displayed as a function of the position of a target dielectric cube. The resulting sensitivity distribution clearly reveals the crucial role of the gap in sensing with metamaterials, which is consistent with the electric field distribution near the gap.

Series Resonant type Sustain Driver for improving efficiency of PDP (PDP 효율개선을 위한 직렬공진형 Sustain 드라이버)

  • Kang, Feel-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.250-253
    • /
    • 2007
  • This paper presents a new sustain driver employing energy recovery function to minimize power losses transpired during the operation of plasma display panel. The proposed circuit uses the resonance between the equivalent capacitance of panel and an external inductor to provide/recover energy to/from the panel. The proposed circuit can save the system cost compared with the conventional one, and has high-performance in energy recovery. To verify the validity of the proposed circuit, we implemented experiments based on 7.5 inch AC-PDP.

  • PDF

Vibration Isolation System for Driver's Seats with Negative Stiffness (운전자용 의자의 부강성 진동 절연 시스템)

  • Park, Sung-Tae;Lee, Sang-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2010
  • As a vehicle speed increases, more vibration energy is transmitted from chassis to a driver. Current isolation system for the driver's seat by damping control can reduce the transmitted vibration energy near resonance area. But in higher frequency region than natural frequency multiplied by $\sqrt{2}$, the vibration energy transmitted to the driver has a tendency to be increased. Therefore, the method by natural frequency reduction of the system is preferred to increase the effectiveness of the anti-vibration. However, the natural frequency could not be freely reduced due to the nature of the isolation system structure. A new passive suspension system to reduce the natural frequency is proposed. The theoretical analysis and experimental results show better vibration attenuation compared with the current isolation system.

Various Quantum Ring Structures: Similarity and diversity

  • Park, Dae-Han;Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.25 no.2
    • /
    • pp.36-41
    • /
    • 2016
  • Similarity and diversity of various quantum ring structures are investigated by classifying energy dispersions of three different structures: an electrostatic quantum ring, a magnetic quantum ring, and a magnetic-electric quantum ring. The wave functions and the eigenenergies of a single electron in the quantum ring structures are calculated by solving the Schrdinger equation without any electron-electron interaction. Magnetoconductance is studied by calculating a two-terminal conductance while taking into account the backscattering via the resonance through the states of the quantum rings at the center of a quasi-one dimensional conductor. It is found that the energy spectra for the various quantum ring structures are sensitive to additional electrostatic potentials as well as to the effects of a nonuniform magnetic field. There are also characteristics of similarity and diversity in the energy dispersions and in the single-channel magnetoconductance.