Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.3.143

Design and Fabrication of Low Frequency Driven Energy Harvester Using Electromagnetic Conversion  

Lee, Byung-Chul (Department of Electrical Engineering, University of Ulsan)
Chung, Gwiy-Sang (Department of Electrical Engineering, University of Ulsan)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.3, 2013 , pp. 143-147 More about this Journal
Abstract
This paper describes a low frequency driven electromagnetic energy harvester (EMEH) which consists of a thin flame resistant (FR-4) planar spring, NdFeB permanent magnets, and a copper coil. The FR-4 spring was fabricated using a desk computer numerical control (CNC) 3D modeling machine. Mathematical modeling and ANSYS finite element analysis (FEA) were used totheoretically investigate the mechanical properties of the spring mass system. The proposed EMEH generates a maximum power of 65.33 ${\mu}W$ at a resonance frequency of 8 Hz with an acceleration of 0.2 g (1 g = 9.8 $m/s^2$) and a superior normalized power density (NPD) of 77 ${\mu}W/cm^3{\cdot}g^2$.
Keywords
Energy harvesting; Electromagnetic; Low frequency; FR-4; Permanent magnet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Shearwood, M. A. Harradine, P. H. Meller, and T. S. Birch, IEE Proc.-Circuits Devices Syst., 148, 337(2001) [DOI: http://dx.doi.org/10.1049/ip-cds:20010525].   DOI   ScienceOn
2 P. Glynne-Jones, S. P. Beeby, and N. M. White, IEE Proc.-Sci. Meas. Technol., 148, 68 (2001) [DOI: http://dx.doi.org/10.1049/ip-smt:20010323].   DOI   ScienceOn
3 S. Roundy and P. K. Wrigth, Smart Mater. Struct., 13, 1131 (2004) [DOI: http://dx.doi.org/10.1088/0964-1726/13/5/018].   DOI   ScienceOn
4 D. Fan, Y. Liu, F. Han, and J. Dong, Sens. Actu. A, 187,190 (2012) [DOI: http://dx.doi.org/10.1016/j.sna.2012.08.037].   DOI   ScienceOn
5 P. D. Mitchelson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green, Sens. Actu. A, 115, 523 (2004) [DOI:http://dx.doi.org/10.1016/j.sna.2004.04.026].   DOI   ScienceOn
6 M. El-hami, P. Glynne-Jones, N. M. White, and S. Beeby, Sens Actu. A, 92, 335 (2001) [DOI: http://dx.doi.org/10.1016/S0924-4247(01)00569-6].   DOI   ScienceOn
7 B. C. Lee, M. A. Rahman, S. H. Hyun, and G. S. Chung, Smart Mater. Struct., 21, 125024 (2012) [DOI: http://dx.doi.org/10.1088/0964-1726/21/12/125024].   DOI   ScienceOn
8 N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen, Sens. Actu. A, 97-98, 685 (2002) [DOI: http://dx.doi.org/10.1016/S0924-4247(02)00033-X].   DOI   ScienceOn
9 P. Wang, K. Tanaka, S. Sugiyama, X. Dai, X. Zhao, and J. Liu, Microsyst. Technol., 15, 941 (2009) [DOI: http://dx.doi.org/10.1007/s00542-009-0827-0].   DOI
10 S. Cheng, N. Wang, and D. P. Arnold, J. Micromech. Microeng., 20, 025015 (2010) [DOI: http://dx.doi.org/10.1088/0960-1317/20/2/025015].   DOI   ScienceOn
11 G. Hatipoglu and H. Urey, Smart Mater. Struct., 19, 015022 (2010) [DOI: http://dx.doi.org/10.1088/0964-1726/19/1/015022].   DOI   ScienceOn
12 B. Yang, C. Lee, W. Xiang, J. Xie, J. H. He, R. K. Kotlanka, S. P. Low, and H. Feng, J. Micromech. Microeng., 19, 035001 (2009) [DOI: http://dx.doi.org/0.1088/0960-1317/19/3/035001].   DOI   ScienceOn
13 N. G. Elvin and A. A. Elvin, J. Sound Vib., 330, 2314 (2011) [DOI:http://dx.doi.org/10.1016/j.jsv.2010.11.024].   DOI   ScienceOn
14 C. Cepnik, O. Radler, S. Rosenbaum, T. Strohla, and U. Wallrabe, Sens. Actu. A, 167, 416 (2011) [DOI: http://dx.doi.org/10.1016/j.sna.2011.01.023].   DOI   ScienceOn
15 P. Wang, H. Liu, X. Dai, Z. Yang, Z. Wang, and X. Zhao, Microelectron.J., 38, 1175 (2007) [DOI: http://dx.doi.org/10.1016/ j.mejo.2007.10.002].   DOI   ScienceOn
16 C. B. Williams and R. B. Yates, Sens. Actu. A, 52, 8 (1996) [DOI: http://dx.doi.org/10.1016/0924-4247(96)80118-X].   DOI   ScienceOn