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Abstract  Similarity and diversity of various quantum ring structures are investigated by classifying energy dispersions

of three different structures: an electrostatic quantum ring, a magnetic quantum ring, and a magnetic-electric quantum

ring. The wave functions and the eigenenergies of a single electron in the quantum ring structures are calculated by

solving the Schrdinger equation without any electron-electron interaction. Magnetoconductance is studied by

calculating a two-terminal conductance while taking into account the backscattering via the resonance through the

states of the quantum rings at the center of a quasi-one dimensional conductor. It is found that the energy spectra for

the various quantum ring structures are sensitive to additional electrostatic potentials as well as to the effects of a

nonuniform magnetic field. There are also characteristics of similarity and diversity in the energy dispersions and in

the single-channel magnetoconductance.
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I. Introduction

For the last several decades, there has been a great deal of

interest in various magnetically confined quantum structures

such as a magnetic quantum dot formed using a scanning

tunneling microscope lithographic technique, [1] a magnetic

antidot, a magnetic quantum ring formed by spatially

inhomogeneous magnetic fields in a two dimensional

electron gas (2DEG), and magnetic superlattices formed

using a patterning of ferromagnetic materials integrated in a

semiconductor [2]. Recently, the study of 2DEG-based

magnetic quantum structures has expanded to graphene-

based quantum structures [3-5].

Theoretical developments have focused on the energy

spectra of electrons confined in these magnetic quantum

structures [6,7]. Those structures have current-carrying

states, existing along the boundary between two different

magnetic domains; these are the so-called the magnetic

edge states. These magnetic structures are analogous to

conventional quantum structures confined by electrostatic

potentials, but they show transport properties distinct from

those of conventional structures due to their characteristic

electronic structures. [6-9] One of these magnetic quantum

structures, the electronic structure of a magnetic quantum

ring, has previously been investigated by the author's group

[10]. In the Quantum Hall regime, electronic transport

through a quasi-one-dimensional (1D) wire in the presence

of an external magnetic field can be well described in

terms of the edge-state picture. The transport properties of

the quasi-1 wire show quantized magnetoconductance and

resonant tunneling behaviors when edge channels are

scattered by local electrostatic modulation, i.e., by

electrostatic antidot potential, [11] or by local magnetic

modulation such as a magnetic quantum dot [7] and a

magnetic quantum ring [12].

In this paper, we present an in-depth pedagogical study

on three different kinds of quantum ring structures: an

electrostatic quantum ring (EQR) with an uniform

magnetic field, a magnetic quantum ring (MQR) formed

by spatially inhomogeneous magnetic fields in 2DEG, and

a magnetic-electric quantum ring (MEQR) formed by a

magnetic quantum dot combined with an additional antidot

electrostatic potential at the center of the dot. In previous

works, there has been no attempt to characterize the

properties of the three kinds of quantum ring structures at

the same time and study of the aspects of electron

transport, such as the magnetoconductance, has often been

left out. It should be noted that the conductance calculation

involves a great deal of numerical works to obtain the

energy eigenvalues, while these values can be obtained

analytically for a conventional electrostatic quantum ring

structure. Previous studies have looked at the energy

dispersion for MQR [10]; however, in this work we

additionally and in detail show the similarity and diversity

of energy dispersion using a comparison of the results of

EQR and MEQR. We calculate the magnetoconductance

behaviors of the three different quantum rings in the same

way that we study the magnetoconductance of a quantum

dot [7] and of a magnetic quantum ring [12]. We discuss
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the characteristics of similarity and diversity in

magnetoconductance among the three different quantum

rings: EQR, MQR, and MEQR.

II. The Single Particle Schrödinger Equation 
and Wave Functions

The general form of the single-particle Schrödinger

equation for various quantum ring structures without

electron-electron interaction is written as

(1)

Here, e is the magnitude of an electron charge,  is the

vector potential, and V(r) is the electrostatic potential. In

our calculation, the vector potential  can be chosen to

have a symmetric gauge (Coulomb gauge) with a Aθ

component only, in plane polar coordinates (r, θ).  is the

momentum operator. We have solved this single-particle

Schrdinger equation in the plane polar coordinates (r, θ).

The wave function can be written in a separable form as

, where m is the angular momentum

quantum number and n (=0, 1, 2...) is the number of nodes

in the radial wave function. After eliminating in Eq. (1), the

equation of the radial part is written as

(2)

where

(3)

and the equation of the radial part is simplified in

dimensionless units as,

(4)

where   The effective potential

Veff(r) is defined differently for each quantum ring structure

depending on the given V(r) and Aθ. β is the characteristic

wave number to make r a dimensionless variable. All

quantities are expressed in dimensionless units by letting

and the inverse length  be 1.

Therefore, we use r instead of using ρ in Eq. (4) from now

on. While the cyclotron frequency for the external

magnetic field B0 is  we define the standard

frequency  for an easy expression of electrostatic

potentials in the familiar way. In these units,

 ω0 is the standard frequency in

units of energy. By solving Eq. (4), we can obtain the

wavefunction of each quantum ring with the given

geometric properties and the vector potential  and the

additional electrostatic potential V(r).

 1. An electrostatic quantum ring (EQR)

An EQR is formed in 2DEG with a uniform magnetic

field , with the electrostatic potential written as

(5)

Here, m* is the effective mass of an electron. δ and α are

parameters that describe the strengths of the antidot and the

parabolic potential, respectively. r0 is a parameter that

describes the size of EQR with δ and α. 

For the uniform external magnetic field, the vector

potential  in Eq. (1) can be chosen to have a symmetric

gauge (Coulomb gauge) as   in plane

polar coordinates (r, θ);  is the ratio of the

applied external magnetic field to the standard magnetic

field The effective potential Veff(r) is obtained by

substituting and V(r) into Eq. (3) and is expressed in

dimensionless units as

(6)

where  defines the magnetic flux in a circle

with the radius r0. In dimensionless units, .

The wave functions Rnm(r) are calculated from Eq. (4)

and written as

 

(7)

where U is the confluent hypergeometric function.

 2. A magnetic quantum ring (MQR)

A MQR is formed by the nonuniform magnetic field;

 for   for , and  for

. The direction of the magnetic field is perpendicular

to the 2DEG. In this quantum structure, we do not have the

additional electrostatic potential V(r). We consider the

same magnetic field strength for  and   in this

work. In plane polar coordinates (r, θ) is in the plane, and

the vector potential  can be chosen to have a symmetric

gauge as in [10]:

(8)

is the ratio of the applied external magnetic field to

the standard magnetic field B0.

The effective potential Veff(r) with  is then
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written as

(9) 

where  and  and

 is the flux quantum.

(10) 

where  

 and .

Functions J and N are the Bessel functions and M and U

are the confluent hypergeometric functions. The expression

in Eq. (9) and Eq. (10) are different from Ref. [10] because,

when we define dimensionless units in this work, we use

B0 as a standard magnetic field, while we used the external

magnetic field B itself as the standard magnetic field in

previous work.

3. Magnetic-electric quantum ring (MEQR)

A MEQR is formed by the combination of an

electrostatic potential and a nonuniform magnetic field. We

introduce an additional antidot electrostatic potential

 at the center of a magnetic dot having the

radius r0   for  and , elsewhere. Here,

δ is a parameter that describes the strength of the antidot

potential which repels electron away from the dot center.

 In plane polar coordinates (r, θ), the vectosr potential 

can be chosen to have a symmetric gauge as

 

(11)

The effective potential Veff is expressed as:

(12)

where  .

The wave functions are expressed by the Bessel function

J and the confluent hypergeometric function U as:

(13)

where

Electrons confined in the magnetic quantum dot are

repelled by the antidot potential. When the parameter δ is

small enough that the size of the antidot is smaller than that

of the magnetic quantum dot, this structure acts in a

manner similar to that of a quantum ring, we call this

structure MEQR.

III. Results and Discussion

1. Energy dispersion

While the eigenenergies of MQR and MEQR are

determined numerically by the continuity of the

wavefunctions and their derivatives at the boundaries, the

eigenenergies of EQR are calculated analytically. For EQR,

by substituting Eq. (7) into Eq. (4) the eigenenergies can be

derived as:

 

Figure 1 shows the energy dispersions of the three different

quantum ring structures as a function of γ. On the y-axis,

  Here, we plot (n, m): n = 0, 1, and m =

−5, −4, −3, −2, −1, 0, 1, 2 for simplicity. The parameters α

= 0.1, δ = 0.2 and   are used for EQR (Fig. 1(a))

and  , and δ = 0.2 are used for

MQR (Fig. 1(b)) and MEQR (Fig. 1(c)).

In Fig. 1(a), the angular momentum transition as a

function of the magnetic field can be observed. It is a well-

known phenomenon in a conventional quantum ring to

have a finite width confined by electrostatic potentials [13].

However in a conventional quantum dot confined by

electrostatic potentials, this type of angular momentum

transition in the ground state can occur only when the

electron-electron interaction is included. [14] The energy

dispersions shown in Fig. 1(b) (MQR) and Fig. 1(c)

(MEQR) also show the existence of the angular

momentum transition in the ground state without the

electron-electron interaction, similar to the case of EQR.

Besides the similarity of the angular momentum transition,

the total shapes of the energy dispersion look different.

First of all, EQR has a nonzero eigenenergy at γ = 0, while

MQR (Fig. 1(b)) and MEQR (Fig. 1(c)) have zero value of

εnm. This difference can be understood in the following

way. While EQM has a parabolic confinement due to the

parameter α, the MQR and MEQR structures have no

parabolic confinement, as can be seen in Eq. (9) and Eq.
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(12) at γ = 0. MQR is the same as 2DEG with no external

magnetic field and MEQR is the same as 2DEG having the

antidot electrostatic potential. For both cases, there is no

confined electron. 

As can be seen in Fig. 1(b), when B is weak, (0, m) states

with m<0 are distributed far away from the ring region to

include |m| amount of magnetic flux quanta and have

Landau level energies. The low magnetic field means that

the density of the magnetic flux is low over the ring. When

B increases, states approach the ring area because of the

high magnetic flux density. As the states get closer to the

ring, the energies deviate from the Landau level because of

the inhomogeneous distribution of the magnetic field.

When B is so strong that states m<0 can locate within the

inner circle, energies again approach the Landau level. This

behavior is clearly shown between γ = 0 and γ = 4.0.

In Fig. 1(c), when B is weak, electrons feel magnetic flux

missing as in the case in MQR; (0, m) states with m<0 are

distributed far away from the dot region, where the

electron feels less antidot repulsion. If the magnetic field is

strong enough, the effect of the magnetic inhomogeneity

becomes a dominant factor and the strong magnetic field

confines the electrons nearer the center. However the states

m<0 cannot locate within the dot due to the repulsion from

the antidot potential. Therefore, energies cannot approach

the Landau level in the strong magnetic field region.

 II. Effective Potential and Probability Density 

Figure 2 shows the effective potential Veff(r) and

corresponding probability densities  of the lowest

energy state at γ = 1.5. The states (n, m) = (0, −11), (0, −

4), and (0, −1) are chosen as the lowest energy eigenvalues,

as can be seen Fig. 1, for EQR, MQR, and MEQR,

respectively. For EQR, (n, m) = (0, −11) does not appear

in Fig. 1(a), because we have plotted up to the m = −5 state

only. We obtain (n, m) = (0, −11) directly from the

minimum of 

with parameters γ = 1.5, α = 0.1 δ = 0.2, and s0 = 7. For

a certain magnetic field strength, the shape of Veff(r) can be

controlled by changing parameters such as  α and δ in Fig.

2(a)  and Fig. 2(e). However, Veff(r) in Fig. 2(c) is fixed

unless we change the size of the inner and outer radii of the

ring because there is no electrostatic potential depending

on α and δ in MQR. The dotted lines indicate the position

of . Fig. 2(b), Fig. 2(d), and Fig. 2(f) show

that an electron in the bottom state of each quantum
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structure stays in a ring shaped region, even though the

three different rings are formed in different ways.

 III. Magnetoconductance

The transport properties of the quasi-1D wire show

quantized magnetoconductance. However, when edge

channels are scattered by a local electrostatic modulation or

magnetic modulation, the magnetoconductance shows

resonant tunneling behavior. In order to investigate the

resonant backscattering phenomena, we consider a quasi-

1D conductor with the three different quantum rings at the

center, one by one. As can be seen in Fig. 2, electron

probability densities of the three different rings have ring

shapes. We have determined that the width of the quasi-1D

conductor is four times wider than the outer radius of the

magnetic quantum ring. If the probability densities of the

resonant energies stay outside of the 1D-conductor, these

states are excluded in the calculation. The two-terminal

conductance is calculated by the following equation as:

(14)

where EF is the Fermi energy and Γ is the elastic resonance

width.

Figure 3 shows the results for two-terminal ballistic

conductance as a function of the magnetic field γ. The

parameters   α = 0.1 and δ = 0.2

are in dimensionless units. Because  is the

total transmittance by resonance through the states of the

quantum rings, we can count the number of resonant peaks

in Fig. 1. For EQM, as can be seen in Fig. 3(a), there are

a higher number of resonant peaks between  γ = 1.0 and γ

= 3.0 than can be counted in Fig. 1(a); it is because we

have plotted up to m = −5 only in this case. Because we are

interested in one channel transport only, the n = 0 state

alone is considered in the calculation. If we consider n =

1 and higher quantum numbers, there must be additional

peaks having minus values around γ = 1.0  in Fig. 3(b).

Thus we consider ΕF = 2.0 for one channel transport

instead of choosing a higher Fermi energy. All rings exhibit

aperiodic fluctuation in conductance. Different from Fig.

3(b) (MQR) and Fig. 3(c) (MEQR), Fig. 3(a) (EQR) shows

periodic oscillation.

IV. Conclusions

We present a pedagogic study on the electronic properties

of various quantum ring structures: an electrostatic quantum

ring, a magnetic quantum ring, and a magnetic-electric

quantum ring. We investigate the similarity and diversity of

the three different quantum ring structures by calculating

the wave functions and the eigenenergies of a single

electron and the single channel magnetoconductance. It is

found that the energy spectra for the various quantum ring

structures are sensitive to the additional electrostatic

potentials, as well as to the effects of a nonuniform

magnetic field. The probability densities of the electrons in

the bottom state of each quantum structure have ring

shapes, even though the three different quantum structures

have different formation methods. All rings exhibit

aperiodic fluctuation in conductance and among the three

quantum rings, only the electrostatic quantum ring shows

periodic oscillation. Magnetic nonuniformity has the effect

of breaking the periodic oscillation of the two-terminal

conductance.
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