• 제목/요약/키워드: resonance control

검색결과 1,017건 처리시간 0.027초

ECR 용 최적 마그네트에 관한 연구 (A Study on the Optimal Magnet for ECR)

  • 김윤택;김용주;김교순;이용직;손명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계 (The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL)

  • 김기남;박종연;최영민
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1711-1719
    • /
    • 2005
  • In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

와인드업 방지 보상기의 점프공진 제거 특성 (Anti-Jump Resonance Characteristics of Anti-Windup Compensator for Systems with a Saturating Actuator)

  • 장원욱;노현석;박영진
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1342-1350
    • /
    • 1993
  • 본 논문에서는 참고문헌(12)에서 개발된 와인드업 방지 보상기를 사용하여 점프공진 현상을 제거할 수 있음을 참고문헌(16)에 제시된 방법에 기초하여 보이고 이를 위한 보상기 이득 결정 방법을 제시하려 한다.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

매개변수 변동을 갖는 2관성 시스템의 강건제어 (Robust Control of Two Mass Spring System with Parameter Variations)

  • 조도현;이종용;이상효
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.729-737
    • /
    • 1998
  • In this paper, using $\mu$ synthesis algorithm with structured uncertainty, we design controller and apply it for the Two-Inertia resonance(TMS: Two Mass Spring) system. The TMS system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. Furthermore, when vibration frequency for the system is varying by reason of parameter variations, we should consider parameter variations in controller design. Then, we design two other controller schemes of the PI controller and the standard $H_{\infty}$ controller and compare these controllers with the controller designed by the $\mu$ synthesis robust control method by using simulations and experiments.

  • PDF

동적 하중 되먹임 제어를 사용한 직구동 방식 전기기계식 구동장치시스템의 동특성 개선에 관한 연구 (A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control)

  • 이희중;강이석;송오섭
    • 한국항공우주학회지
    • /
    • 제45권4호
    • /
    • pp.328-341
    • /
    • 2017
  • 발사체의 추력벡터제어를 위한 구동장치시스템에서 관성부하를 갖는 전기기계식 위치서보 시스템의 공진 특성과 유연한 기체구조체 지지부의 구조공진이 결합되어 합성공진이 발생한다. 이렇게 발생한 공진은 발사체의 자세제어시스템에 되먹임되어 자세안정성에 영향을 줄 수 있다. 본 논문에서는 발사체의 추력벡터제어를 위한 직구동 방식의 전기기계식 구동장치의 합성공진을 해석하기 위한 모델을 소개하고 합성공진 현상을 저감하여 구동기의 동특성을 개선하는 동적 하중 되먹임 제어기법의 해석 및 시험 결과를 기술하였다.

초음파 용접 시스템 설계에 관한 연구 (A Study on Ultrasonic Welding System Design)

  • 홍정표;정승환;원태현;권순재
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.164-166
    • /
    • 2008
  • Ultrasonic welder joins with a horn and a booster for amplification of the mechanical displacement. This coupling generates other resonance points at a frequency range lower than the piezoelectric material's resonance frequency. Therefore, frequency variation range through PLL control was proposed in order to prevent reaction to these resonance points.

  • PDF

Robust control using Analog Adaptive Resonance Theory

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.93-95
    • /
    • 2006
  • In many control system applications, the system designed must not only satisfy the damping and accuracy specifications, but the control must also yield performance that is robust to external disturbance and parameter variations. We have shown that feedback in conventional control systems has the inherent ability of reducing the effects of external disturbance and parameter variations. Unfortunately, robustness with the conventional feedback configuration is achieved only with a high loop gain, which is normally detrimental to stability. The design of intelligent, autonomous machines to perform tasks that are dull, repetitive, hazardous, or that require skill, strength, or dexterity beyond the capability of humans is the ultimate goal of robotics research. This paper prove the robust control using Analog Adaptive Resonance Theorv(ART2) Algorithm about case study.

  • PDF

능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구 (Collocation of Sensor and Actuator for Active Control of Sound and Vibration)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.778-783
    • /
    • 2003
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered, but this pair suffers from the in-plane motion coupling problem with the out-of$.$plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFB control. As a new alternative, a point sensor and piezoelectric actuator pair is also considered, which provides SPR property in all frequency range except at the first resonance in very low frequency. This non-SPR resonance could be minimized by applying a phase lag compensator.

  • PDF