• Title/Summary/Keyword: resistivity method

Search Result 1,210, Processing Time 0.031 seconds

Safety Evaluation of Rock-Fill Dam by Seismic(MASW) Method (사력댐의 안정성평가를 위한 표면파탐사(MASW)의 활용성)

  • 정해상;오영철;방돈석;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.359-364
    • /
    • 2003
  • For safety evaluation of a rock-fill dim, it is often necessary to investigate spatial distribution of weak zones such as fracture. Both DC-resistivity survey and seismic(SASW) method are usually used for the purpose. Recently, Multichannel analysis of surface waves(MASW) method which makes up for the weak point of SASW method is developed and the site examination which is simple came to be possible comparatively. In order to obtain 2-D shear-wave velocity(Vs) profile along the dam axis that can be associated with dynamic properties of filled materials, MASW method was adapted. Then, DC-resistivity survey and drilling survey were performed to compare with each results. We confirmed that the MASW method and DC-resistivity survey show complementary result that corresspond with drilling result. Therefore, MASW method is an efficient method for dynamic characterization of dam-filling materials and also the combination of related methods such as DC-resistivity can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Effect of Applied Voltage and Resistivity on the Characteristics of Chloride Ions Diffusion in Concrete (적용 전압 및 저항이 콘크리트의 염소이온 확산특성에 미치는 영향)

  • 임병탁;배수호;정영수;김진영;심은철;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.673-678
    • /
    • 2002
  • There are various methods for the electrochemical techniques to estimate diffusion coefficient of chloride ions in concrete, such as ASTM C 1202 test method, Andrade's method, Dhir's method, Tang's method, and etc. In the case of estimating diffusion coefficient of chloride ions in concrete by using these methods, applied voltage and resistivity nay exercise some influence on the characteristics of chloride ions diffusion. Thus. in this study, effect of applied voltage and resistivity on the characteristics of chloride ions diffusion in concrete were researched by applying voltage in 12V, 30V, and 60V, and by using resistivity in 0.2Ω and 1.0Ω, respectively. It can be concluded that diffusion coefficient of chloride ions are found to be increasing as the individual applied voltage and resistivity decrease, when water-cement ratio is constant.

  • PDF

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

Current Saturation in the Electrical Resistivity Method (전기비저항탐사에서 전류포화현상)

  • Kang, Hye-Jin;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.370-377
    • /
    • 2010
  • In this study, we investigated the current saturation which forces the apparent resistivity to converge when the conductivity contrast between the anomalous body and background medium is greater than a specific value. Analizing theoretical and numerical solutions for some simple models, we studied the behavior of the surface charge, and how the surface charge cause the current saturation and finally lead to the convergence of the apparent resistivity in the resistivity method. As a consequence of above analysis, we verified that the current saturation makes the apparent resistivity converge to a specific value and the magnitude of the apparent resistivity anomaly be less than that of the ideal conductor or insulator in the resistivity method. In general, current saturation is considered to occur when the conductivity contrast becomes larger than 100.

Apparent Soil Resistivity Calculation Using Complex Image Method (복소수이미지 방법을 이용한 겉보기 대지저항률 계산)

  • Kim, Ho-Chan;Boo, Chang-Jin;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.318-321
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The apparent soil resistivity can be measured, and also can be calculated if soil parameters are given, becacuse the apparent soil resistivity is a function of these parameters. Therefore, any optimization algorithms can be used to find these parameters which make the calculated apparent soil resistivity close to the measured one. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure has been presented using complex image method.

Analysis on Electric Field Distribution of Dielectric Considering Surface or Volume Resistivity By Charge Simulation Method (전하 중첩법을 이용한 표면 저항 또는 체적 저항을 고려한 유전체의 전계 분포해석)

  • Min, S.W.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1987-1989
    • /
    • 2000
  • In this paper, electric field distribution of dielectric sphere considering surface or volume resistivity is analysed by the use of rotational symmetric charge simulation method. We applied three methods such as ${\alpha},{\beta}$ modified $\beta$ method to check electric field calculation error. We find f method and modified $\beta$ method are suitable to simulate volume and surface resistivity respectively.

  • PDF

Negative Apparent Resistivity in Resistivity Method (전기비저항탐사에서 음의 겉보기 비저항)

  • Cho In-Ky;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • In the resistivity method, the potential difference between two grounded electrodes is measured and this can be positive or negative. The apparent resistivity and the potential difference have the same polarity. Since the electric field is the gradient of the potential, the polarity of the potential difference depends on the direction of the electric field. If the direction of the vector connecting two grounded electrodes is the same to that of the electric field, the measured potential difference and the apparent resistivity become positive. If the opposite is the case, they become negative. In general, the primary electric field and the vector connecting two potential electrodes have the same direction in a surface resistivity method. In this case, the measured potential difference is always positive because the primary electric field is greater than the secondary field. Therefore, the apparent resistivity is always positive if noise is free and topography is flat. The secondary field component, however, can be greater than the primary field component along the vector connecting two potential electrodes in the cross-hole resistivity method. Furthermore, if the secondary electric field and the vector connecting two potential electrodes have an opposite direction, the apparent resistivity become negative. Consequently, the apparent resistivity may be negative in the region where the primary electric field component along the vector connecting two potential electrodes is very small.

Numerical Resistivity Modeling Using Alpha Center Theory: A Case History for Field Resistivity Data (Alpha center를 이용한 전기비저항 수치 모델링 : 현장 탐사 자료에 대한 적용 예)

  • 윤왕중
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.334-340
    • /
    • 1997
  • Alpha center theory which was first proposed by Stefanescu has been proved to be effective for the detection of the location of the conductive orebody. A numerical forward modeling was conducted to verify the effectiveness of this method. Field works were carried out along the three profiles in two different areas for the purpose of finding fractured zone which might be accompanied with the presence of the groundwater. And the results were modeled by alpha center method, which was later testified by wellproven 2-dimensional finite difference inversion scheme. Field data could be successfully modeled with this alpha center algorithm, especially for the smooth-varying resistivity models. For the abrupt change of the resistivity values, the alpha center coefficients have a tendency to be negative to simulate the steep resistivity gradients. This method is quite simple and easy for the future applications. The numerical calculation can be performed very quickly with the personal computers.

  • PDF

Effects of Maximum Probe Spacing of Soil Resistivity Survery on Substation Grounding Analysis (변전소 접지설계를 위한 대지저항율 측정시 전극간 최대간격이 접지해석에 미치는 영향)

  • 정길조;곽희로;최종기
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.382-386
    • /
    • 2001
  • Presently, typical maximum probe spacing of soil resistivity survey(Wenners 4 pin method) is 20 m in case of 154 K substation grounding design of KEPCO. This paper examined the effects of maximum probe spacing of wenner method on the equivalent soil modeling and the accuracy of grounding resistance measurement by comparing the calculated FOP(Fall-of-Potential) curves of various soil models with the measured one at 154kV H substation. The comparison results showed that the inaccurate estimation of deep soil resistivity, which is caused from the short probe spacing of soil resistivity survey, can produce large errors on measurement of grounding resistance. In this paper a quantitative analysis of FOP at H substation has been presented.

  • PDF