• Title/Summary/Keyword: resistive network

Search Result 50, Processing Time 0.029 seconds

A $160{\times}120$ Light-Adaptive CMOS Vision Chip for Edge Detection Based on a Retinal Structure Using a Saturating Resistive Network

  • Kong, Jae-Sung;Kim, Sang-Heon;Sung, Dong-Kyu;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • We designed and fabricated a vision chip for edge detection with a $160{\times}120$ pixel array by using 0.35 ${\mu}m$ standard complementary metal-oxide-semiconductor (CMOS) technology. The designed vision chip is based on a retinal structure with a resistive network to improve the speed of operation. To improve the quality of final edge images, we applied a saturating resistive circuit to the resistive network. The light-adaptation mechanism of the edge detection circuit was quantitatively analyzed using a simple model of the saturating resistive element. To verify improvement, we compared the simulation results of the proposed circuit to the results of previous circuits.

  • PDF

A light-adaptive CMOS vision chip for edge detection using saturating resistive network (포화 저항망을 이용한 광적응 윤곽 검출용 시각칩)

  • Kong, Jae-Sung;Suh, Sung-Ho;Kim, Jung-Hwan;Shin, Jang-Kyoo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.430-437
    • /
    • 2005
  • In this paper, we proposed a biologically inspired light-adaptive edge detection circuit based on the human retina. A saturating resistive network was suggested for light adaptation and simulated by using HSPICE. The light adaptation mechanism of the edge detection circuit was quantitatively analyzed by using a simple model of the saturating resistive element. A light-adaptive capability of the edge detection circuit was confirmed by using the one-dimensional array of the 128 pixels with various levels of input light intensity. Experimental data of the saturating resistive element was compared with the simulated results. The entire capability of the edge detection circuit, implemented with the saturating resistive network, was investigated through the two-dimensional array of the $64{\times}64$ pixels

A Study on the Evaluation of Distribution Reliability Considering Reliability Model for a Resistive-Type of Superconducting Fault Current Limiter (저항형 초전도한류기의 신뢰도 모델을 적용한 배전계통 신뢰도 평가에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.465-470
    • /
    • 2011
  • Recently fault currents are increasing in a network. It is caused by increase in electric demand and high penetration of distributed generation with renewable energy sources. Moreover, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. Accordingly, the fault current will exceed capacity of circuit breakers soon and all the various rational solutions to solve this problem are taken into account. Under these circumstances, superconducting fault current limiter(SFCL) is a new alternative in the viewpoint of technical and economic aspects. This study presents operation processes for a resistive-type of SFCL, and it proposes reliability model for the SFCL. When a SFCL is installed into a network, the contribution of decreased fault currents to failure for distribution equipments can be quantified. As a result, it is expected that a SFCL makes the reliability of adjacent equipments on existing network improve and these changes are analyzed. We propose a methodology to evaluate the reliability in the distribution network where a SFCL is installed considering a reliability model for resistive-type of SFCL and reliability changes for adjacent equipments which are proposed in this paper.

A Study on the Application Analysis of the Resistive type Superconducting Fault Current Limiters using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 저항형 초전도한류기의 계통적용분석 연구)

  • Heo Tae Jeon;Bang Jong Hyun;Bae Hyeong Thaek;Park Min Won;Yu In Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Since the discovery of the high temperature superconductors many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means In limit fault current in power systems. HTS resistive type SFCL is based on the ultra fast transition from the superconducting (non resistive) state to the normal (resistive) state by overstepping the critical current density, In this study, the simulation method of resistive type superconducting fault current limiter using EMTDC is proposed and the developed EMTDC model of SFCL is applied to the modeled power network using the Parameters of real system.

Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle (자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF

Simulation of HTS Resistive Type Superconducting Fault Current Limiter using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고온초전도 저항형한류기 시뮬레이션)

  • Lee, Jae-Deuk;Park, Min-Won;Yu, In-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1385-1387
    • /
    • 2002
  • In the case of HTS Resistive type Superconducting Fault Current Limiter(SFCL), its possibility has been discussed due to its theory and a simple structure. The Resistive type SFCL can be useful for the protection of the power delivery systems from fault current. Effective simulation scheme that can be applied to the utility network readily and cheaply under various conditions considering the sort of faults, the capacity of systems as well are strongly expected and emphasized among researchers. This paper proposes a simulation skill of resistive type SFCL using PSCAD/EMTDC.

  • PDF

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Structural vibration control using resistively shunted piezoceramics

  • Kandagal, S.B.;Venkatraman, Kartik
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.521-542
    • /
    • 2002
  • Application of piezoceramic materials in actuation and sensing of vibration is of current interest. Potential and more popular applications of piezoceramics are probably in the field of active vibration control. However, the objective of this work is to investigate the effect of shunted piezoceramics as passive vibration control devices when bonded to a host structure. Resistive shunting of a piezoceramic bonded to a cantilevered duralumin beam has been investigated. The piezoceramic is connected in parallel to an electrical network comprising of resistors and inductors. The piezoceramic is a capacitor that stores and discharges electrical energy that is transformed from the mechanical motion of the structure to which it is bonded. A resistor across the piezoceramic would be termed as a resistively shunted piezoceramic. Similarly, an inductor across the piezoceramic is termed as a resonantly shunted piezoceramic. In this study, the effect of resistive shunting on the nature of damping enhancement to the host structure has been investigated. Analytical studies are presented along with experimental results.

Application Analysis of a Resistive type SFCL for Transmission Systems (EMTCD를 이용한 154kV 송전계통에서의 초전도 한류기 적용 해석)

  • Heo Tae Jeon;Bae Hyeong Thaek;Park Min Won;Yu In Keun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.409-411
    • /
    • 2004
  • The need for Fault Current Limiters (FCL) is associated with the continuous growth and interconnection of modem power systems and increase in dispersed generation facilities, which result in progressive increase in the short circuit capacity far beyond their original design capacity. Fault Current Limiters (FCL) clips the fault currents and reduces the electromechanical stresses on the network and the need to handle excessive fault currents. In addition, the reduction of the fault duration Provided by the limiter should increase the power transmission capability and improve the dynamic stability. This paper proposes the model of resistive type superconducting fault current limiter using EMTDC(Electromagnetic transients for DC analysis program). In order to verify the effectiveness of the SFCL, in this paper, the analysis of fault current in a transmission system through the EMTDC based simulation by using the modeled component of a resistive type SFCL is peformed and the detailed results are given.

  • PDF

Modeling of HTS Resistive Superconducting Fault Current Limiter Using EMTDC (EMTDC를 이용한 고온초전도 저항형 한류기 모델링)

  • Lee, Jae-Deuk;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.216-218
    • /
    • 2002
  • This study is the modeling of resistive type SFCLs. There was numerical modeling and simulation using EMTP in the conventional modeling of SFCL. The numerical modeling was presented an analysis of numerical characteristic of SFCL. And the modeling using EMTP was made up of the study for setting method of specific parameters of a SFCL. This paper proposes the model of resistive type superconducting fault current limiter using EMTDC(Electromagnetic transients for DC analysis program). The simulation schemes that can be applied to the utility network readily and cheaply under various conditions considering the sort of fault, the capacity of systems as well are strongly expected and emphasized among researchers.

  • PDF