• Title/Summary/Keyword: resistant strains

Search Result 1,315, Processing Time 0.035 seconds

Distribution and Properties of Microorganisms in Soil of Representative Vegetation of Mt. Nam (남산 주요 식생의 토양 미생물의 분포 및 생리적 특성)

  • 성치남;백근식;김종홍;전영문;김정근
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.703-712
    • /
    • 1998
  • Physicochemical factors, microbial population size and the properties of the bacterial isolates were estimated to find out the nature of soil ecosystem of Mt. Nam. Samples were obtained from the surface layer of soils on which specific plant community is developed. Average content of moisture and organic matter of the soils were 21.6% and 17.3%, respectively. These values were similar to those of developing forest soils, but were slightly lower than those of climax ecosystem such as Piagol in Mt. Chiri. Chiri. Content of phosphate was higher than those of other forest soils. The population size of soil bacteria ranged from 27.4 to 195.8 ${\times}\;10^5$ CFU/g. duy soil, and the size is somewhat dependent on the moisture and oranic matter content of soils. A large number of bacteria were able to decompose macromolecules such as starch, elastin and gelatin. Bacterial species composition of each soil was comparatively simple. Pseudomonas, Agrobacterium, Flavobacterium and Xanthomonas which are Gram-negative short rods were widely distributed in the forest soils. The endospore forming Bacillus species were also the main constituents of the soil microflroa. Actinomycetes were widely distributed in the forest soils, but the distribution pattern varied in each site. Most of the actinomycetes were also able to decompose organic macromolecules. The rate of resistant actinomycete strains to antibiotics and heavy metals were lower than those from cultivated soils, but higher than those from well-preserved forest soils. Antibiosis pattern of the actinomycete isolates was similiar to the resistance pattern. This means the forest soils of Mt. nam was somewhat interferred by artificial behabiour.

  • PDF

Isolation and ars Detoxification of Arsenite-Oxidizing Bacteria from Abandoned Arsenic-Contaminated Mines

  • Chang, Jin-Soo;Yoon, In-Ho;Kim, Kyoung-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.812-821
    • /
    • 2007
  • The ecosystems of certain abandoned mines contain arsenic-resistant bacteria capable of performing detoxification when an ars gene is present in the bacterial genome. The ars gene has already been isolated from Pseudomonas putida and identified as a member of the membrane transport regulatory deoxyribonucleic acid family. The arsenite-oxidizing bacterial strains isolated in the present study were found to grow in the presence of 66.7 mM sodium arsenate($V;\;Na_2HAsO_4{\cdot}7H_2O$), yet experienced inhibited growth when the sodium arsenite($III;\;NaAsO_2$) concentration was higher than 26 mM. Batch experiment results showed that Pseudomonas putida strain OS-5 completely oxidized 1 mM of As(III) to As(V) within 35 h. An arsB gene encoding a membrane transport regulatory protein was observed in arsenite-oxidizing Pseudomonas putida strain OS-5, whereas arsB, arsH, and arrA were detected in strain OS-19, arsD and arsB were isolated from strain RW-18, and arsR, arsD, and arsB were found in E. coli strain OS-80. The leader gene of arsR, -arsD, was observed in a weak acid position. Thus, for bacteria exposed to weak acidity, the ars system may cause changes to the ecosystems of As-contaminated mines. Accordingly, the present results suggest that arsR, arsD, arsAB, arsA, arsB, arsC, arsH, arrA, arrB, aoxA, aoxB, aoxC, aoxD, aroA, and aroB may be useful for arsenite-oxidizing bacteria in abandoned arsenic-contaminated mines.

Screening of Antagonistic Actinomycetes for Potato Scab Control and Isolation of Antibiotic Compound (감자 더뎅이병원균에 대해 길항활성을 갖는 방선균 탐색 및 항균 활성물질의 분리)

  • Lee, Hyang-Burm;Cho, Jong-Wun;Lim, Chi-Hwan;Kim, Chang-Jin
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.164-169
    • /
    • 2004
  • In the course of our screening for biocontrol agent (BCA) against Streptomyces scabiei and S. turgidiscabies causing potato scab using 5,000 actinomtcete isolates, 9 antagonistic strains were selected as BCA candidates through in vitro and in vivo assay. An antagonistic strain, A020645 was highly resistant to some pesticides and antibiotics such as dazomet and mancozeb and showed high control value in vivo. Two bioactive compounds (compound A, B) were purified by anion exchange chromatography, solid phase (ODS) extraction, TLC and reverse phase HPLC. Their chemical structures are now thought to be nucleoside derivative as determined by $^1H-NMR$ data analysis. Their full chemical structures would be elucidated through $^{13}C-NMR$, HMQC and HMBC analyses. Further studies will be focused on fitness in soil and formulation of the BCA candidates.

Identification of 12 radiation-resistant bacterial species in the phylum Proteobacteria new to Korea

  • Han, Joo Hyun;Maeng, Soohyun;Park, Yuna;Lee, Sang Eun;Lee, Byoung-Hee;Lee, Ki-eun;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.9 no.2
    • /
    • pp.85-104
    • /
    • 2020
  • In 2019, after a comprehensive investigation of indigenous prokaryotic species in Korea, a total of 12 bacterial strains assigned to the phylum Proteobacteria were isolated from soil. With the high 16S rRNA gene sequence similarity (>98.8%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to independent, predefined bacterial species. This study identified two species in the family Burkholderiaceae, one species in the family Comamonadaceae, two species in the family Oxalobacteraceae, one species in the family Micrococcaceae, one species in the family Bradyrhizobiaceae, one species in the family Methylobacteriaceae, one species in the family Rhizobiaceae, one species in the family Rhodocyclaceae, and one species in the family Sphingomonadaceae. There is no official report about these 12 species in Korea, so are described as unreported bacterial species in Korea in this study. Gram reaction, basic biochemical characteristics, colony, and cell morphology are also described in the species description section.

Occurrence and Biovar Classification of Bacterial Wilt Caused by Ralstonia solanacearum in Eggplant (Solanum melongena) (가지의 Ralstonia solanacearum에 의한 풋마름병 발생과 생리형의 분화)

  • Lim, Yang-Sook;Lee, Mun-Jung;Cheung, Jong-Do;Rew, Young-Hyun;Kim, Byung-Soo
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • Batcterial wilt caused by Ralstonia solanacearum is one of important and widespread diseases worldwide as well as in Korea. Bacterial wilt disease caused by R. solanacearum has been reported mainly in solanaceous crops including eggplant (Solanum melongena), tomato (Solanum lycopersicum), potato (S. tuberosum), and pepper (Capsicum annuum). A total of 48 strains of R. solanacearum from eggplant were collected during 2005 and 2006. They were confirmed as R. solanacearum by PCR amplification with primer pair flipcF/flipcR resulting in production of 470-bp DNA fragment. The 15 isolates exhibited pathogenicity on eggplant and tomato, but less virulent on pepper than other species. The biovar of collected isolates, which have been reported of five types worldwide, were classified as biovars 3 and 4 by physiological test. Biovar 4 was the dormant type without pathogenicity on eggplant rootstock, whereas biovar 3 had pathogenicity on eggplant rootstocks that is resistant to R. solanacearum, indicating necessity of breeding new rootstock with resistance to R. solanacearum biovar 3

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young;Jeon, Byeong Jun;Kang, Ji Eun;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.579-590
    • /
    • 2020
  • Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) (Agrobacterium에 의한 오이 형질전환에서 자엽절 절편의 이용)

  • Jang, Hyun-A;Kim, Hyun-A;Kwon, Suk-Yoon;Choi, Dong-Woog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.198-202
    • /
    • 2011
  • Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic cucumber. Cotyledonary-node explants of cucumber (Cucumis sativus L. cv., Eunsung) were co-cultivated with Agrobacterium strains (EHA101) containing the binary vector (pPZP211) carrying with CaMV 35S promoter-nptII gene as selectable marker gene and 35S promoter-DQ gene (unpublished data) as target gene. The average of transformation efficiency (4.01%) was obtained from three times experiments and the maximum efficiency was shown at 5.97%. A total of 9 putative transgenic plants resistant to paromomycin were produced from the cultures of cotyledonary-node explants on selection medium. Among them, 6 transgenic plants showed that the nptII gene integrated into each genome of cucumber by Southern blot analysis.

Screening of Antimicrobial Lactic Acid Bacteria against Bovine Mastitis (여러 분리원으로부터 유방염 원인균에 대한 항균력을 가진 유산균의 분리)

  • Lee, Na-Kyoung;Choi, In-Ae;Park, Yong-Ho;Kim, Jong-Man;Kim, Jae-Myung;Jung, Suk-Chan;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.543-547
    • /
    • 2007
  • Bovine mastitis is costly infectious disease of dairy cattle, being responsible for significant economic losses all over the world. Also, mastitis has troubled about resistance to antibiotics. The purpose of this study was to screen a novel antimicrobial strain from various sources (raw milk and feeds (from farm of Paju, Dangjin, and Hwasung), commercial milk, Korean traditional fermented foods, and chicken feces). The isolate was screened using triple agar layer method and deferred method was used for confirmation of antimicrobial effect. Seventy six of isolates were screened using triple agar layer method. In these strain, 42 isolates were shown a broad spectrum of autimicrobial activity against mastitis pathogens. Especially, fourteen isolates were shown over 20 mm inhibition zone against S. aureous ATCC 25923. These results suggest that these novel antimicrobial strains could be used for the alternative of antibiotics.

A Novel Plasmid-Mediated ${\beta}-lactamase$ that Hydrolyzes Broad-Spectrum Cephalosporins in a Clinical Isolate of Klebsiella pneumoniae

  • Kwak, Jin-Hwan;Kim, Mu-Yong;Chol, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2001
  • A new extended-spectrum ${\beta}-lactamase$ with an isoelectric point (pl) of 6.2 was detected in Klebsiella pneumoniae Fl 61 that was isolated from a patient with infection. This strain was highly resistant to the third or fourth generation cephalosporins such as cceftazidime ceftriaxone, cefoperzaone, and cefpirome. Analysis of this strain by the double disk diffusion test showed synergies between amoxicillin-clavulanate (AMX-CA) and cefotaxime, and AMX-CA and aztreonam, which suggested that this strain produced a extended-spectrum ${\beta}-lactamase$ (ESBL). Cenetic analysis revealed that the resistance was due to the presence of a 9.4-kb plasmic, designated as pkpl 61, encoding for new ${\beta}-lactamase$ gene (bla). Sequence analysis showed that a new bla gene of pkpl 61 differed from $bla_{TEM-1}$ by three mutations leading to the following amino acid substitutions: $Val_{84}{\rightarrow}lie,{\;}Ala_{184}{\rightarrow}Val,{\;}and{\;}Gly_{238}{\rightarrow}Ser$. These mutations have not been reported previously in the TIM type ${\beta}-lactamases$ produced by clinical strains. The novel ${\beta}-lactamase$ was overexpressed in E. coli and purified by ion exchange chromatography on Q-Sepharose and CM-Sepharose, and then further purified by gel filtration on Sehadex G-200. The catalytic activity of th8 purified ${\beta}-lactamase$ was confirmed by the nitrocefin disk.

  • PDF

Antibacterial Efficacies of Disinfectants against Salmonella typhimurium Depending on Pre-warming Conditions

  • Lee, Jin-Ju;Kim, Dong-Hyeok;Kim, Dae-Geun;Simborio, Hannah Leah;Min, Won-Gi;Lee, Hu-Jang;Chang, Dong-Il;Chang, Hong-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.65-72
    • /
    • 2012
  • Salmonellosis is a widespread bacterial zoonosis that commonly causes enterocolitis and foodborne poisoning leading to an extensive economic loss in domestic animal industry. Considerably, the emergence of multidrug resistant strains of Salmonella spp. induces further severe problems affecting public health. The present report was designated to investigate the antibacterial efficacies of three common disinfectants including an oxidizing compound disinfectant (OXC), a triple salt (TS) and a quaternary ammonium compound (QAC) against Salmonella typhimurium subjected to the preliminary changes of drug temperature. All solutions of three disinfectants were pre-incubated at different temperature (22, 37 and $63^{\circ}C$) for 1 h prior to exposure to bacteria. The disinfectants and bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OMS) according to treatment condition. Under the DW condition, the disinfectant efficacy of the QAC at $63^{\circ}C$ was higher than that of $22^{\circ}C$. Furthermore, under HW diluent the disinfectant efficacy of the TS pre-warmed at both of 37 and $63^{\circ}C$ were increased compared to that of $22^{\circ}C$. Considerably, the efficacy of pre-warmed QAC at both of 37 and $63^{\circ}C$ under the OMS diluent were higher than that of $22^{\circ}C$. Conclusively, prewarming at higher temperatures have positive effects on the stability of the antibacterial efficacies of TS and QAC.