• Title/Summary/Keyword: resistant screening

Search Result 332, Processing Time 0.031 seconds

Safety Assessment of Commercial Enterococcus Probiotics in Korea

  • Lee, Ki-Eun;Lee, Min-Young;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.942-945
    • /
    • 2008
  • There have been concerns about possible pathogenicity and antimicrobial resistance in Enterococcus, which constitute more than 50% of probiotics in the worldwide market. In this study, Enterococcus in sixteen products manufactured by ten different companies was tested for the presence of six virulence genes and two vancomycin resistance genes. Results in this study showed the safety of Enterococcus on the Korean market and the importance of screening vanA, vanE, agg, cylA, esp, and gelE. Pulse-field gel electrophoresis showed that the sixteen isolates tested in this study are originated from three strains.

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.47.1-47.13
    • /
    • 2022
  • Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.

Rapid Screening of Apple mosaic virus in Cultivated Apples by RT-PCR

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.159-161
    • /
    • 2003
  • The coat protein (CP) gene of Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was selected for the design of virus-specific primers for amplification and molecular detection of the virus in cultivated apple. A combined assay of reverse transcription and polymerase chain reaction (RT-PCR) was performed with a single pair of ApMV-specific primers and crude nucleic acid extracts from virus-infected apple for rapid detection of the virus. The PCR product was verified by restriction mapping analysis and by sequence determination. The lowest concentration of template viral RNA required for detection was 100 fg. This indicates that the RT-PCR for detection of the virus is a 10$^3$times more sensitive, reproducible and time-saving method than the enzyme-linked immunosorbent assay. The specificity of the primers was verified using other unrelated viral RNAs. No PCR product was observed when Cucumber mosaic virus (Cucumovirus) or a crude extract of healthy apple was used as a template in RT-PCR with the same primers. The PCR product (669 bp) of the CP gene of the virus was cloned into the plasmid vector and result-ant recombinant (pAPCP1) was selected for molecule of apple transformation to breed virus-resistant transgenic apple plants as the next step. This method can be useful for early stage screening of in vitro plantlet and genetic resources of resistant cultivar of apple plants.

In Vivo Screening for Biocontrol Agents (BCAs) against Streptomyces scabiei Causing Potato Common Scab

  • Lee, Hyang-Burm;Cho, Jong-Wun;Park, Dong-Jin;Li, Chang-Tian;Ko, Young-Hwan;Song, Jeong-Heub;Koh, Jeong-Sam;Kim, Bum-Joon;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • Through in vitro screening for biocontrol agents (BCAs) against Streptomyces scabiei causing potato (Solanum tuberosum) common scab, 19 streptomycete and 17 fungal isolates with antagonistic activity were selected as BCA candidates. For the selection of BCA candidates which are highly resistant to 10 kinds of antibiotics or pesticides, chemical susceptibility testing was initially performed in vitro. A remarkable degree of variation in susceptibility to antibiotics or pesticides was observed among the isolates tested. Streptomycete A020645 isolate was highly resistant to all the tested chemicals except neomycin up to 5,000 ppm. On the other hand, out of 36 antagonistic microbes subjected to in vivo pot tests using cultivar Daejima, four streptomycete isolates namely, A020645, A010321, A010564, and A020973, showed high antagonistic activity with >60% and 55% control value, respectively, and high chemical resistance to 10 kinds of chemicals. Therefore, these isolates were selected as potential BCAs for the control of potato common scab.

Molecular Screening of Blast Resistance Genes in Rice using SSR Markers

  • Singh, A.K.;Singh, P.K.;Arya, Madhuri;Singh, N.K.;Singh, U.S.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.12-24
    • /
    • 2015
  • Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

Antibacterial Activity of Salvia Miltiorrhiza against Methicillin-resistant Staphylococcus aureus (丹參의 methicillin 내성 황색포도구균에 대한 효과)

  • Seo, Myung-won;Jeong, Seung-il;Shin, Chol-gyun;Ju, Young-sung;Kim, Hong-jun;Ko, Byoung-seob
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.1
    • /
    • pp.94-99
    • /
    • 2003
  • Objectives : Gram-positive bacteria have became increasing resistant to antibacterial agents, and hence multi-drug-resistant bacterial pathogens are now a major problem in clinical medicine. There is, therefore, a need for new antibacterial agents. In the course of our screening program for potent antibacterial agent from medicinal plants, the extract of Salvia miltiorrhiza (S. miltiorrhiza) showed antibacterial activity against methcillin resistant Staphylococcus aureus (MRSA) and antibiotic-resistant S. aureus. Methods : S. miltiorrhiza was extracted with 80$\%$ EtOH. The extract was suspended in H2O and fractionated successively with hexane chloroform, ethyl acetate, and n-buthanol. The chloroform fraction, which showed the highest antibacterial activity(MICs, 78㎍/ml) against MRSA, was chromatographed on a silica gel column and recycling prep-LC to give the pure antibacterial component. Results and Conclusions : The second fraction among the chloroform soluble portion of an aqueous EtOH extract of S. miltiorrhiza root showed outstanding antibacterial activity against MRSA and antibiotic-resistant S. aureus compared to the other fraction. An active compound was isolated from the second fraction using silica gel column chromatoraphy and recycling prep-LC. Based on these data together with the IH-, 13C-NMR, mass and mp, the active compounds were identified tanshinone Ⅰ, dehydrotanshinone Ⅰ and cryptotanshinone. Among tanshinones, cryptotanshinone and dihydrotanshinone Ⅰ MICs against MRSA and antibiotics-resistant S. aureus were 12.5, 12.5 and 6.3㎍/ml, respectively.

  • PDF

A Procedure for Inducing the Occurrence of Rice Seedling Blast in Paddy Field

  • Qin, Peng;Hu, Xiaochun;Jiang, Nan;Bai, Zhenan;Liu, Tiangang;Fu, Chenjian;Song, Yongbang;Wang, Kai;Yang, Yuanzhu
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.200-203
    • /
    • 2021
  • Rice blast caused by the filamentous fungus Magnaporthe oryzae, is arguably the most devastating rice disease worldwide. Development of a high-throughput and reliable field blast resistance evaluation system is essential for resistant germplasm screening, resistance genes identification and resistant varieties breeding. However, the occurrence of rice blast in paddy field is easily affected by various factors, particularly lack of sufficient inoculum, which always leads to the non-uniform occurrence and reduced disease severity. Here, we described a procedure for adequately inducing the occurrence of rice seedling blast in paddy field, which involves pretreatment of diseased straw, initiation of seedling blast for the first batch of spreader population, inducing the occurrence of the second batch of spreader population and test materials. This procedure enables uniform and consistent infection, which facilitates efficient and accurate assessment of seedling blast resistance for diverse rice materials.

Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria (박 덩굴쪼김병 저항성 검정조건 구명)

  • Kim, Sang Gyu;Lee, Oak Jin;Lee, Sun Yi;Kim, Dae Young;Huh, Yun-Chan;An, Se Woong;Jang, Yoon ah;Moon, Ji hye
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.96-102
    • /
    • 2020
  • Fusarium wilt caused by Fusarium oxysporum is a devastating disease limiting production of watermelon in Korea. The best way to control diseases is to use resistant gourd rootstock on watermelon. This study was conducted to establish an efficient screening method for resistant bottle gourd to Fusarium oxysporum f. sp. lagenaria. To develop an efficient inoculation method, incubation temperature after inoculation (15, 20, 25, and 30℃), inoculum concentration (1 × 105, 5 × 105, 1 × 106, and 5 × 106 conidia·mL-1), and growth stages of seedlings (7, 10, 13, and 16 days) was investigated. Disease development of Fusarium wilt of bottle gourd was little affected by differences in incubation temperature and growth stages of seedlings. But resistant lines were more susceptible and appeared more severe symptoms at the higher inoculation level. Taken together, we suggest that an effective screening method for resistant gourd plant to Fusarium wilt is to dip the roots of 10-day old seedlings in spore suspension of 1 × 105 - 1 × 106 conidia·mL-1, for 30 min, to transplant the seedlings into a non-infected soil, and then to incubate the inoculated plants in a growth room at 25℃ for 3 weeks to develop Fusarium wilt.

Development of Convenient Screening Method for Resistant Radish to Plasmodiophora brassicae (효율적인 무 뿌리혹병 저항성 검정법 확립)

  • Jo, Su-Jung;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • To establish simple and reliable screening method for resistant radish to Plasmodiophora brassicae Woron. using soil-drenching inoculation, the development of clubroot on radish seedlings inoculated with P. brassicae GN-1 isolate according to several conditions such as inoculum concentration, plant growth stage and incubation period after inoculation was studied. To select resistant radish against clubroot, 10-day-old seedlings were inoculated with P. brassicae by drenching the roots with the spore suspension of the pathogen to give $1{\times}10^9$ spores/pot. The inoculated seedlings were incubated in a growth chamber at $20^{\circ}C$ for 3 days then cultivated in a greenhouse ($20{\pm}5^{\circ}C$) for 6 weeks. Under the optimum conditions, 46 commercial cultivars of radish were tested for resistance to YC-1 (infecting 15 clubroot-resistant cultivars of Chinese cabbage) and GN-1 (wild type) isolates of P. brassicae. Among them, thirty-five cultivars showed resistance to both isolates and one cultivar represented susceptible response to the pathogens. On the other hand, the other cultivars showed different responses against the tested P. brassicae pathogens. The results suggest that this method is an efficient system for screening radish with resistance to clubroot.

Development of Effective Screening Method and Evaluation of Radish Cultivars for Resistance to Fusarium oxysporum f. sp. raphani (효율적인 무 시들음병 저항성 검정법 개발 및 무 품종들의 병 저항성 평가)

  • Baik, Song-Yi;Kim, Jin-Cheol;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.148-152
    • /
    • 2010
  • To establish the efficient screening method for resistance of radish to F. oxysporum f. sp. raphani, we investigated the development of Fusarium wilt of two radish cultivars, 'Songbaek' (susceptible) and 'Tokwang' (moderately resistant), according to several conditions such as inoculation methods, inoculum concentrations, and dipping periods of radish roots in spore suspension. By infected soil and soil-drenching inoculation methods, Fusarium wilt did not occur on the seedlings of both cultivars. In root dipping inoculation method using cut or non-cut roots of radish plants, the cut roots were easily infected by the pathogen than non-cut roots. And the disease development of two cultivars represented significant difference in non-cut root method. On the other hand, disease severity of Fusarium wilt on radish seedlings according to inoculum concentration increased in a dose-dependant manner, regardless of dipping periods. Using screening method established from the results, the 41 commercial radish cultivars were evaluated the degree of resistance to F. oxysporum f. sp. raphani. Among them, 6 radish cultivars were resistant, 22 cultivars were moderately resistant, and 13 cultivars were susceptible to Fusarium wilt.