• Title/Summary/Keyword: resistance to proteolysis

Search Result 10, Processing Time 0.02 seconds

Thermostability and Resistance to Proteolysis of L-Asparaginase Purified from Strepfomyces lincolnensis M-20 (Strepfomyces lincolnensis M-20 균주로 부터 분리, 정제된 L-Asparaginase의 열안정성과 단백 가수 분해 효소에 대한 저항성)

  • Kim, Kyoung-Ja
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.199-205
    • /
    • 2007
  • Thermostable asparaginase was purified to homogeneity from mesophilic Strepfomyces lincolnensis M-20 by 30${\sim}$70% ammonium sulfate precipitation and asparagine-Sepharose CL 6B affinity column chromatography, The apparent molecular mass of L-asparaginase by SDS-PAGE was found to be 47 kDa, whereas by its mobility on Sephacryl S-300 column was around 180 kDa, indicating that the enzyme at the native stage acts as tetramer, The purified enzyme showed a single band on acrylamide gel electrophoresis. The optimum pH and temperature were pH 9.5 and 55${\circ}$C, respectively. Chemical modification experiments of purified asparagines implied the existence cystein residue located at or near active site. Purified asparaginase retained the 85% of the initial activity after incubation at 90${\circ}$C for 30 min. A correlation between themostability and resistance to proteolysis of commercial asparaginase and purified asparaginase from Strepfomyces lincolnensis M-20 was investigated. Purified thermostable asparaginase was resistant to trypsin and chymotrypsin treatment, while the commercial asparaginase was not themostable and was susceptible to proteolytic treatment with trypsin and chymotrypsin.

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets

  • Moon, Seonghyeon;Lee, Byung-Hoon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.933-942
    • /
    • 2018
  • Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Resistance of Hen항s Egg Yolk Immunoglobulins in Livetin to Digestive Enzymes (리베틴에 존재하는 난황항제의 소화효소에 대한 저항성)

  • 이경애
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.438-443
    • /
    • 1999
  • A livetin solution(LS) containing yolk immunoglobulins(IgY) was separated by treating the egg yolk with natural gum, carrageenan. Carrageenan has been used as a food ingredient. Relative absorbance of IgY LS after proteolysis was investigated. IgY LS was fairly stable to pepsin digestion at pH 3.0. However, IgY LS appeared to be susceptible to pepsin digestion at pH 2.0, showing 18% of relative absorbance and complete breakdown H chain after 30 min exposure. Relative absorbance of IgY LS was considerably high after exposure to trypsin and chymotrypsin for 8 hr. IgY LS showed especially good stability to chymotrypsin digestion.

  • PDF

Antioxidant Activity of Lactic Acid Bacteria Isolated from Korean Traditional Food Kimchi (한국전통식품 김치로부터 분리한 유산균주의 항산화 활성)

  • Kim, Da-Young;Kim, Hong Seok;Yoo, Jung Sik;Cho, Yoon Ah;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.89-98
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic properties of lactic acid bacteria (LAB) isolated from a Korean traditional food kimchi. Gram staining was performed by Macrogen (Macrogen, Inc.) for identification of the LAB. Five strains of LAB were identified, including DKGF9 (Lactobacillus plantarum), DKGF1 (L. paracasei ), DKGF8 (L. casei ), DK207 (L. casei ), and DK211 (L. casei ). The biological activities of the isolated strains were assessed. The results showed that heat resistance of the strains was similar to or higher than the commercial strain L. acidophilus LA-5. Indirect testing of the ability of the strains to attach to the mucin layer revealed that DKGF9, DKGF1, and DKGF8 have high binding affinities for the mucous layer. All strains showed antimicrobial activity similar to or higher than the commercial strain LA-5. In proteolysis experiments, the diameters of proteolysis zones of the five strains increased in the period of 24-72 h, with DKGF1 exhibiting the largest zone diameter. Three strains were selected based on their antioxidant activities. Among the five isolated strains, L. paracasei DKGF1 showed potential probiotic activity, and thus, it may be useful for the development of health-promoting products.

Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides

  • Mattiuzzo, Maura;Gobba, Cristian De;Runti, Giulia;Mardirossian, Mario;Bandiera, Antonella;Gennaro, Renato;Scocchi, Marco
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.160-167
    • /
    • 2014
  • Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that has emerged as a virulence factor despite its function has not yet been precisely established. By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed peptidase makes the bacterial cells specifically less susceptible to several proline-rich antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of activity directly correlates with the degree of resistance. We established that E. coli OpdB can efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even though they contained several prolines, shortening them to inactive fragments. Two consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single basic residue, there is no cleavage if proline residues are present in the $P_1$ and $P_2$ positions. These results also indicate that cytosolic peptidases may cause resistance to antimicrobial peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and may contribute to define the substrate specificity of the E. coli OpdB.

Morphological and Physiological Properties of Interspecific Electrofusants, Bacteriocin Producer, from Lactobacillus sp. JC-7 and Lactobacillus acidophilus 88 (Lactobacillus sp. JC-7과 Lactobacillus acidophilus 88간의 Bacteriocin 생산 세포융합주들의 형태 및 생리학적 성질에 관한 연구)

  • 전홍기;조영배;최현정;배경미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1237-1245
    • /
    • 1997
  • Interspecific fusants were made from the cells of two strains of Lactobacillus genus, a streptomycin resistant Lactobacillus sp. JC-7 and a kanamycin resistant L. acidophilus 88. The morphological and physiological properties of the fusants were examined by determining bacteriocin productivity, acid-producing activity, ability of carbohydrates utilization and three important enzyme activities. The fusants produced a bacteriocin against indicator strains and fusant No. 1, 4 exhibited a larger inhibition zone compared to that of L. acidophilus 88. $\beta$-Galactosidase, phospho-$\beta$-galactosidase, lipase activities and resistance to NaCl of Lactobacillus sp. JC-7 were better than those of L. acidophilus 88. Fusant No. 3 and 7 exhibited excellent lipase activities. Protease activity and acid productivity of L. acidophilus 88 were better than those of Lactobacillus sp. JC-7. Proteasse activities of all fusants were higher than those of parental strains, and expecially fusant No. 5 and 7 exhibited excellent proteolysis ability.

  • PDF

Protein Cyclization Enhanced Thermostability and Exopeptidase-Resistance of Green Fluorescent Protein

  • Zhao, Zhonglin;Ma, Xin;Li, Liang;Zhang, Wei;Ping, Shuzhen;Xu, Ming-Qun;Lin, Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.460-466
    • /
    • 2010
  • A mutant of green fluorescent protein ($GFPmut3^*$) from the jellyfish Aequorea victoria was cyclized in vitro and in vivo by the use of a naturally split intein from the dnaE gene of Synechocystis species PCC6803 (Ssp). Cyclization of $GFPmut3^*$ was confirmed by amino acid sequencing and resulted in an increased electrophoretic mobility compared with the linear $GFPmut3^*$. The circular $GFPmut3^*$ was $5^{\circ}C$ more thermostable than the linear form and significantly more resistant to proteolysis of exopeptidase. The circular $GFPmut3^*$ also displayed increased relative fluorescence intensity. In addition, chemical stability of $GFPmut3^*$ against GdnHCl revealed more stability of the circular form compared with the linear form.

Influences of Squid Ink Added to Low-Salted Squid Jeot-gal on Its Proteolytic Characteristics (오징어 먹즙 첨가가 저 식염 오징어 젓갈의 단백질분해 특성에 미치는 영향)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 2013
  • Squid ink was added to the salt fermented squid by 2% or 4% of concentration and ripened at $10^{\circ}C$ for 8 weeks and at $20^{\circ}C$ for 32days. The effects of the squid ink on the amino nitrogen and muscle protein of salt fermented squid were investigated. The results are as follows; As the salt concentration was decreased and the fermentation temperature raised, amino nitrogen in the salt fermented squid without addition of the squid ink was significantly increased to the latter stage of the ripening and hence fermentations were enhanced. From the change of the protein in the squid muscle in the experiments, dissolution of the myosin heavy chain took place conspicuously in the early stage of the ripening while actin was rarely changed which resulted in the strong resistance to protease. The amino nitrogen content in the salt fermented squid addition of the squid ink has increased to the latter part of the ripening but the range was smaller than no treatment groups. The protein in squid muscle, especially the myosin heavy chain was remarkably dissolved in the middle of the ripening whereas the squid ink added groups of high salt concentration and low temperature showed the tendency of slow proteolysis.

Pseudomonas aeruginosa Exotoxin A Induces Apoptosis in Chemoresistant YD-9 Human Oral Squamous Carcinoma Cell Line Via Accumulation of p53 and Activation of Caspases (항암제에 저항성을 가지는 YD-9 human oral squamous carcinoma cell line에서 Pseudomonas aeruginosa exotoxin A의 p53 단백질 누적과 caspase를 활성화 경로를 통해 유도된 세포자멸사)

  • Kim, Gyoo-Cheon;Gil, Young-Gi
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1047-1054
    • /
    • 2009
  • Oral squamous carcinoma (OSC) cells present resistance to chemotherapeutic agents-mediated apoptosis in the late stages of malignancy. Advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers. It was demonstrated here that Pseudomonas aeruginosa exotoxin A (PEA) significantly decreased the viability of chemoresistant YD-9 cells in the apoptosis mechanism. Apoptotic manifestations were evident through changes in nuclear morphology and generation of DNA fragmentation. PEA treatment induced caspase-3, -6 and -9 cleavage, and activation. These events preceded proteolysis of the caspase substrates poly (ADP-ribose) polymerase (PARP), DNA fragmentation factor 45 (DFF45), and lamin A in YD-9 cells. The reduction of mitochondrial membrane potential, release of cytochrome c and SmacjDlABLO from mitochondria to cytosol, andtranslocation of AlF into nucleus were shown. While p53, p21 and $14-3-3{\gamma}$ were upregulated, cyclin Band cdc2 were downregulated by PEA treatment. Taken together, PEA induces apoptosis in chemoresistant YD-9 cells via activation of caspases, mitochondrial events and regulation of cell cycle genes.