• Title/Summary/Keyword: resistance to agrochemicals

Search Result 12, Processing Time 0.035 seconds

Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control

  • Hyeonheui Ham;Ga-Ram Oh;Yong Hwan Lee;Yong Hoon Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.525-536
    • /
    • 2024
  • Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.

Development of Antagonistic Microorganism for Biological Control of Dollar Spot of Turfgrass (잔디 동전마름병의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Shim, Taek-Su;Jung, Woo-Cheol;Do, Ki-Seok;Shim, Gyu-Yul;Lee, Jae-Ho;Choi, Kee-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • Dollar spot caused by Sclerotinia homeocarpa is one of major diseases in putting greens. Microorganisms antagonistic to S. homeocarpa, a pathogen of dollar spot, were primarily screened through in vitro tests, including dual culture method and triple layer agar diffusion method. In vivo tests were also conducted to select the best candidate for a biocontrol microorganism, using pot experiment. Bacillus subtilis EW42-1 and Trichoderma harziaum GBF-0208 were finally selected as biocontrol agents against dollar spot. Relative Performance Index(RPI) was used as a criterion of selecting potential biocontrol agents. B. subtilis EW42-1 and T. harzianum GBF-0208 showed resistance to several agrochemicals mainly used in a golf course. B. subtilis EW42-1 and T. harzianum GBF-0208 suppressed effectively the disease progress of dollar spot like synthetic fungicide tebuconazole in the nursery where dollar spot had seriously occurred. B. subtilis EW42-1 and T. harzianum GBF-0208 have a potential to be biocontrol agents for the control of dollar spot.

Growth-inhibitory Effects of Citrus Oils and Synthetic Agricultural Fungicides on Molds Isolated from Putrefied Citrus Fruits (감귤 부패 사상균에 대한 감귤 정유와 시판 합성 농약의 항균 효과)

  • Kim, Yu-Kyoung;Koh, Jeong-Sam;Huh, Yoon-Hee;Ko, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.356-360
    • /
    • 1999
  • Growth-inhibitory effects of citrus oils and agricultural fungicides, which were on the market, on several molds isolated from putrefied citrus fruits were investigated. When fungicidal activities of 11 kinds of synthetic agrochemicals against 6 species of molds, Alternaria alternata, Rhizopus sp., Botrytis cinerea, Monilia candida, Penicillium italicum and Penicillium digitatum, were investigated, agrochemicals containing mancozeb or fluazinam as an effective component had the broadest fungicidal spectrum. Agrochemicals containing iprodione, benomyl, azoxystrobin or thiophanate were less effective on the molds and those containing conazole derivative were intermediately effective. Resistance of the molds to the agrochemicals were species- and agrochemical-dependent. Among those molds tested, Penicillium italicum and Alternaria alternata showed relatively higher level of survival in the presence of synthetic fungicides. On the other hand, when the molds were exposed to citrus oils by direct contact, no cell could survive regardless of the species. The fungicidal activity of citrus oils was also confirmed by paper disk method and microscopic observation. These results suggested that citrus oils had broad killing activity against molds. Therefore, it would be necessary to design method for the application of citrus oils in order to improve post-harvest storage of citrus fruits.

  • PDF

Chemical Resistance of Diaporthe citri against Systemic Fungicides on Citrus

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Yong Chull Jeun
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.351-360
    • /
    • 2023
  • Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

Biological Control of Powdery Mildew by a Hyperparasite, Ampelomyces quisqualis 94103: From isolation to a commercial biofungicide product.

  • Lee, Sang-Yeob;Lee, Sang-Bum;Kim, Choong-Heo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.30-31
    • /
    • 2003
  • Total 291 isolates of Ampelomyces quisqualis were obtained from 32 species of powdery mildew fungi and a selected isolate, Ampelomyces quisqualis 94013 (AQ94013) effectively hyperparasitized 6 species of Sphaerotheca and one species of Erysiphe which cause serious damage on many important crops in Korea. Moreover, AQ94013 showed antagonistic effects against 12 major fungal plant pathogens as well. Results indicated that the present isolate is not a host specific hyperparasite and has a broad spectrum of biocontrol potential. Providentially, AQ94013 revealed resistance to a number of agrochemicals so as to be applied with the chemicals reciprocally.(중략)

  • PDF

Development of Antagonistic Microorganism for Biological Control of Pythium Blight of Turfgrass (잔디 피시움마름병(Pythium blight)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Do, Ki-Suk;Kim, Won-Kuk;Lee, Jae-Ho;Choi, Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • Pythium blight caused by Pythium spp. is one of major diseases in putting green of golf course. In this study, microorganisms which are anatgonistic to Pythium aphanidermatum, a pathogen of pythium blight, were selected primary through in vitro tests, dual culture method and triple layer agar diffusion method. In vivo test against pythium blight were conducted to select the best candidate biocontrol microorganism by pot experiment in a plastic house. Bacillus subtilis GB-0365 was finally selected as a biocontrol agent against pythium blight. Relative Performance Indies(RPI) was used as a criterion of selecting potential biocontrol agent. B. subtilis GB-0365 showed resistance to major synthetic agrochemicals used in golf course. Alternative application of synthetic agrochemicals and B. subtilis GB-0365 was most effective to successfully contol pythium blight. B. subtilis GB-0365 suppressed the development of pythium bight of bentgrass by 56.4% as compared to non-treated control and its disease control efficacy was 60.9% of a synthetic fungicide Oxapro(WP) efficacy. B. subtilis GB-0365 has a potential to be a biocontrol agent for control of pythium blight.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Studies on Rice Varietal Resistance to Rice Stem Maggot, Chlorops oryzae Matsumura (벼줄기굴파리에 대한 수도(水稻)의 품종저항성(品種抵抗性))

  • LEE, Y.B.;HWANG, C.Y.;LEE, M.H.;Choi, K.M.;AHN, J.H.
    • Korean journal of applied entomology
    • /
    • v.25 no.1 s.66
    • /
    • pp.27-32
    • /
    • 1986
  • To establish a method for measuring varietal resistance against rice stem maggot in field and pot, 20 varieties were used in $1981{\sim}1983$. The degree of injured stems by the 1st generation larvae was significantly correlated with that of injured panicles by the 2nd ($r=0.864^{**}$). There was no ovipositional preference in rice stem maggot. The larval mortality after artificial infestation varied widly from 5.6 to 100% in varieties and that of the resistant varieties was high after boring. There was a negative correlation between number of injured leaves and larval mortality after artificial infestation ($'81:r=-0.833^{**},\;'82:r=-0.918^{**}$). It is considered that larval mortality mainly caused by antibiosis and larval mortality 20 days after infestation on rice seedlings is ideal for evaluating the varietal resistance to rice stem maggot. Resistant varieties are Nagdongbyeo, Jinjubyeo and Chucheongbyeo susceptible varieties, Keumgangbyeo, Milyang 23, Baigyangbyeo and Milyang 30.

  • PDF