DOI QR코드

DOI QR Code

Chemical Resistance of Diaporthe citri against Systemic Fungicides on Citrus

  • Zar Zar Soe (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Yong Ho Shin (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Hyun Su Kang (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Yong Chull Jeun (Sustainable Agriculture Research Institute, Jeju National University)
  • Received : 2023.05.17
  • Accepted : 2023.06.29
  • Published : 2023.08.01

Abstract

Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.

Keywords

Acknowledgement

This work was carried out with the support of 'Cooperative Research Program for 189 Agriculture Science and Technology Development (PJ0169062023)' funded by Rural 190 Development Administration, Republic of Korea.

References

  1. Altertini, C., Gredt, M. and Leroux, P. 1999. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic. Biochem. Physiol. 64:17-31. https://doi.org/10.1006/pest.1999.2406
  2. Anke, T. 1995. The antifungal strobilurins and their possible ecological role. Can. J. Bot. 73:S940-S945. https://doi.org/10.1139/b95-342
  3. Baek, U., Heo, M. and Hong, K. 1974. Citrus disease and pest control status. Hyesung Publishing House, Seoul, Korea. 43 pp.
  4. Baldwin, B. C., Clough, J. M., Godfrey, C. R. A., Godwin, J. R. and Wiggins, T. E. 1996. The discovery and mode of action of ICIA5504. In: Modern fungicides and antifungal compounds, eds. by H. Lyr, P. E. Russell and H. D. Sisler, pp. 69-77. Intercept, Andover, UK.
  5. Becher, R. and Wirsel, S. G. R. 2012. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogen. Appl. Microbiol. Biotechnol. 95:825-840. https://doi.org/10.1007/s00253-012-4195-9
  6. Becker, W. F., von Jagow, G., Anke, T. and Steglich, W. 1981. Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with an E-β-methoxyacrylate system as common structural element. FEBS Lett.132:329-333. https://doi.org/10.1016/0014-5793(81)81190-8
  7. Brandt, U., Schubert, J., Geck, P. and von Jagow, G. 1992. Uncoupling activity and physicochemical properties of derivatives of fluazinam. Biochim. Biophys. Acta 1101:41-47. https://doi.org/10.1016/0167-4838(92)90464-O
  8. Bushong, P. M. and Timmer, L. W. 2000. Evaluation of postinfection control of citrus scab and melanose with benomyl, fenbuconazole and azoxystrobin. Plant Dis. 84:1246-1249. https://doi.org/10.1094/PDIS.2000.84.11.1246
  9. Chaisiri, C., Liu, X., Lin, Y. and Luo, C. 2022. Diaporthe citri: a fungal pathogen causing melanose disease. Plants 11:1600.
  10. Clough, J. M., Anthony, V. M., de Fraine, P. J., Frasser, T. E. M., Godfrey, C. R. A., Godwin, J. R. and Youle, D. 1995. The synthesis of fungicidal β-methoxyacrylates. In: Proceedings of the Eighth International Congress of Pesticide Chemistry: Options 2000, eds. by N. N. Ragsdale, P. C. Kearny and J. R. Plimmer, pp. 59-73. American Chemical Society, Washington, DC, USA.
  11. Cooley, R. N. and Caten, C. E. 1993. Molecular analysis of the Septoria nodorum β-tubulin gene and characterization of a benomyl-resistance mutation. Mol. Gen. Genet. 237:58-64. https://doi.org/10.1007/BF00282784
  12. Day, D. A., Whelan, J., Millar, A. H., Siedow, J. N. and Wiskich, J. T. 1995. Regulation of the alternative oxidase in plants and fungi. Aust. J. Plant Physiol. 22:497-509. https://doi.org/10.1071/PP9950497
  13. Finch, H. J. S., Samuel, A. M. and Lane, G. P. F. 2002. Lockhart and Wiseman's crop husbandry including grassland. 8th ed. Woodhead Publishing Limited, Cambridge, UK. 528 pp.
  14. Foreign Agricultural Service. 2020. South Korea: citrus annual. 2020. URL https://www.fas.usda.gov/data/south-korea-citrus-annual-4 [15 December 2021].
  15. Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20:338-343. https://doi.org/10.1016/S0167-7799(02)02021-8
  16. Guo, Z.-J, Miyoshi, H., Komyoji, T., Haga, T. and Fujita, T. 1991. Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochim. Biophys. Acta 1056:89-92. https://doi.org/10.1016/S0005-2728(05)80077-5
  17. Hayashi, K., Watanabe, M., Tanaka, T. and Uesugi, Y. 1996. Cyanide-insensitive respiration of phytopathogenic fungi demonstrated by antifungal joint action of respiration inhibitors. J. Pestic. Sci. 21:399-403. https://doi.org/10.1584/jpestics.21.399
  18. Hyun, J.-W., Yi, P.-H., Hwang, R.-Y. and Moon, K.-H. 2013. Aspect of incidence of the major citrus diseases recently. Res. Plant Dis. 19:102-107 (in Korean). https://doi.org/10.5423/RPD.2013.19.2.102
  19. Koenraadt, H., Somerville, S. C. and Jones, A. L. 1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82:1348-1354. https://doi.org/10.1094/Phyto-82-1348
  20. Koller, W. 1991. Fungicide resistance in plant pathogens. In: CRC handbook of pest management in agriculture, Vol. 2, ed. by D. Pimentel, 2nd ed. pp. 679-720. CRC Press, Boca Raton, FL, USA.
  21. Kwon, H.-M., Nam, K.-W., Kim, K.-S., Kim, D.-H., Lee, S.-C. and Hyun, J.-W. 2003. Characterization of the causal fugus of citrus melanose, Diaporthe citri isolated from blighted twigs of citrus in Jeju. Res. Plant Dis. 9:153-158 (in Korean). https://doi.org/10.5423/RPD.2003.9.3.153
  22. Lee, K. H., Choi, J., Park, S. and Kim, H. T. 2019. Control effects of several fungicides on jujube anthracnose and fungicide resistance monitoring. Res. Plant Dis. 25:188-195 (in Korean). https://doi.org/10.5423/RPD.2019.25.4.188
  23. Lemay, A. V., Bailey, J. E. and Shew, B. B. 2002. Resistance of peanut to sclerotinia blight and the effect of acibenzolar-S-methyl and fluazinam on disease incidence. Plant Dis. 86:1315-1317. https://doi.org/10.1094/PDIS.2002.86.12.1315
  24. Li, Q., Ritzel, R. G., McLean, L. L. T., McIntosh, L., Ko, T., Bertrand, H. and Nargang, F. E. 1996. Cloning and analysis of the alternative oxidase gene of Neurospora crassa. Genetics 142:129-140. https://doi.org/10.1093/genetics/142.1.129
  25. Liu, X. Y., Chaisiri, C., Lin, Y., Fu, Y. P., Yin, W. X., Zhu, F. X., Li, J. B., Xiong, B., Wu, H., Xu, A. and Luo, C. X. 2023. Effective management of citrus melanose based on combination of ecofriendly chemicals. Plant Dis. 107:1172-1176. https://doi.org/10.1094/PDIS-03-22-0513-RE
  26. Ma, Z., Yoshimura, M. A. and Michailides, T. J. 2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Microbiol. 69:7145-7152. https://doi.org/10.1128/AEM.69.12.7145-7152.2003
  27. Mizutani, A., Miki, N., Yukioka, H., Tamura, H. and Masuko, M. 1996. A possible mechanism of control of rice blast disease by a novel alkoxyiminoacetamide fungicide, SSF126. Phytopathology 86:295-300. https://doi.org/10.1094/Phyto-86-295
  28. Mizutani, A., Yukioka, H., Tamura, H., Miki, N., Masuko, M. and Takeda, R. 1995. Respiratory characteristics in Pyricularia oryzae exposed to a novel alkoxyiminoacetamide fungicide. Phytopathology 85:306-311. https://doi.org/10.1094/Phyto-85-306
  29. Mondal, S. N., Vicent, A., Reis, R. F. and Timmer, L. W. 2007. Saprophytic colonization of citrus twigs by Diaporthe citri and factors affecting pycnidial production and conidial survival. Plant Dis. 91:387-392. https://doi.org/10.1094/PDIS-91-4-0387
  30. Morita, Y. and Tojo, M. 2007. Modifications of PARP medium using fluazinam, miconazole, and nystatin for detection of Pythium spp. in soil. Plant Dis. 91:1591-1599. https://doi.org/10.1094/PDIS-91-12-1591
  31. National Crop Pest Management System. 2020. Citrus: melanose. URL https://ncpms.rda.go.kr/npms/FruitImageListR.np [15 December 2021] (in Korean).
  32. Olaya, G., Zheng, D. and Koller, W. 1998. Differential responses of germinating Venturia inaequalis conidia to kresoxim-methyl. Pestic. Sci. 54:230-236. https://doi.org/10.1002/(SICI)1096-9063(1998110)54:3<230::AID-PS815>3.0.CO;2-O
  33. Rural Development Administration, System of Fungicide Security. 2020. Information of citrus melanose. URL https://psis.rda.go.kr/psis [15 December 2021] (in Korean).
  34. Sauter, H., Ammermann, E., Benoit, R., Brand, S., Gold, R. E., Grammenos, W., Kohle, H., Lorenz, G., Muller, B., Rohl, F., Schirmer, U., Speakman, J. B., Wenderoth, B. and Wingert, H. 1995. Mitochondrial respiration as a target for antifungals: lessons from research on strobilurins. In: Antifungal agents: discovery and mode of action, eds. by G. K Dixon, L. G. Copping, and D. W. Hollomon, pp. 173-191. BIOS Scientific Publishers, Oxford, UK.
  35. Shirane, N., Masuko, M. and Takeda, R. 1995. Effects of SSF-126, a novel alkoxyiminoacetamide blasticide, on mycelial growth and oxygen consumption of Pyricularia oryzae. Plant Pathol. 44:636-640. https://doi.org/10.1111/j.1365-3059.1995.tb01687.x
  36. Soe, Z. Z., Shin, Y. H., Kang, H. S., Kim, M. J. and Jeun, Y. C. 2023. Rapid identification of Diaporthe citri by gene sequence analysis. Res. Plant Dis. 29:130-136. https://doi.org/10.5423/RPD.2023.29.2.130
  37. Tamura, O. 2000. Resistance development of gray mold on beans towards fluazinam and relevant countermeasures. In: Abstract of the 10th Symposium of Research Committee of Fungicides Resistance, pp. 7-16. Phytopathological Society of Japan, Tokyo, Japan.
  38. Timmer, L., Garnsey, S. M. and Graham, J. H. 1988. Compendium of citrus diseases. American Phytopathological Society, St. Paul, MN, USA. 80 pp.
  39. Vitoratos, A. G. 2014. Mode of action and genetic analysis of resistance to fluazinam in Ustilago maydis. J. Phytopathol. 162:737-746. https://doi.org/10.1111/jph.12254
  40. Von Jagow, G. and Link, T. A. 1986. Use of specific inhibitors on the mitochondrial bc1 complex. Methods Enzymol. 126:253-271. https://doi.org/10.1016/S0076-6879(86)26026-7
  41. Whiteside, J. O. 1977. Sites of action of fungicides in the control of citrus melanose. Phytopathology 67:1067-1072. https://doi.org/10.1094/Phyto-67-1067
  42. Yarden, O. and Katan, T. 1993. Mutations leading to substitutions at amino acid 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478-1483. https://doi.org/10.1094/Phyto-83-1478
  43. Zhang, Y., Zhang, B., Luo, C., Fu, Y. and Zhu, F. 2021. Fungicide actions and resistance mechanisms of prochloraz to Penicillium digitatum. Plant Dis. 105:408-415. https://doi.org/10.1094/PDIS-05-20-1128-RE
  44. Zheng, D. and Koller, W. 1997. Characterization of the mitochondrial cytochrome b gene from Venturia inaequalis. Curr. Genet. 32:361-366. https://doi.org/10.1007/s002940050289
  45. Zitko, S. E. and Timmer, L. W. 1998. Evaluation of fungicides for control of citrus scab and melanose on grapefruit, 1996. Fungicide and Nematicide Tests 53:490.