• Title/Summary/Keyword: resistance test

Search Result 6,773, Processing Time 0.039 seconds

A Study on the Physical Characteristics of the Low-voltage Circuit Breaker Based on the Accelerated Degradation Test (가속 열화 시험에 따른 저압용 차단기의 물리적 특성에 관한 연구)

  • Sin dong, Kang;Jae-Ho, Kim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.1-8
    • /
    • 2022
  • This study analyzed the characteristics of insulation resistance and operating time based on an accelerated degradation test of a low-voltage circuit breaker. The experimental sample used a molded case circuit breaker (MCCB) and an earth leakage circuit breaker (ELCB). After measuring the insulation resistance of the circuit breakers, the leakage current was affected by an external rather than an internal structure. Furthermore, the insulation resistance of the circuit breakers with accelerated degradation was measured using a Megger insulation tester. In the accelerated degradation test, aging times of five, ten, 15, and 20 years were applied according to a temperature derived using the Arrhenius equation. Circuit breakers with an equivalent life of ten, 15, and 20 years had increased insulation resistance compared to those with less degradation time. In particular, the circuit breaker with an equivalent life of ten years had the highest insulation resistance. Component analysis of the circuit breaker manufactured through an accelerated degradation test confirmed that the timing of the increase in insulation resistance and the time of additive loss were the same. Finally, after analyzing the operating time of the circuit breakers with degradation, it was confirmed that the MCCB did not change, but the ELCB breaker failed.

Analytical Study on the Pullout Resistance Characteristics of Bored Pile (매입말뚝의 인발저항특성에 관한 연구)

  • Park, Jong-Bae;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Structural experiment result showed that PHC(d=600mm) Pile used as a common compression member could resist 83.6 ~ 91.6 tonf of ultimate tension force, if the adhesion of P.C. bar of PHC pile to the concrete foundation is strengthened. Considering a proper safety factor to ultimate tension strength, PHC pile can substitute the anti-floating anchor, or reduce the number of anchors. For this purpose, pullout resistance behavior of a Bored pile embedded in real ground as well as structural tension strength of PHC pile must be evaluated. This study performed the static pullout tests to evaluate the pullout behavior of bored pile, and compared the test results with design value of side resistance. To evaluate the pullout resistance easily, static pullout test results were compared with dynamic loading test results using PDA. As a result, cement paste of the bored pile was hardened which is after 15 days, LH side resistance design value corresponded well to the Static pullout test results, also to the side resistance evaluated by dynamic loading test.

Reliability Updates of Driven Piles Using Proof Pile Load Test Results (검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

An Experimental Study on GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Aerodynamics Device Package (공기저항 저감장치 패키지를 이용한 대형화물차량의 연비개선 및 온실가스 저감효과에 관한 실험적 연구)

  • Park, Seungwon;Dong, Lang;Her, Chulhaeng;Yun, Byoeunggyu;Kim, Daewook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Improving fuel consumption, particularly that of commercial vehicles, has become a global concern. The reduction in logistics cost has been a key issue in efforts to improve fuel economy and efficiency of transportation equipment. Typical technologies for reducing reduce fuel usage include air resistance reduction technologies, tire rolling resistance technologies, and idle technologies among others. Air resistance technology is a highly effective method that can be easily applied in a short period. As with air resistance technology, several devices involving side skirt, boat tail and gap fairing have been developed based on an analytical 3-D modeling technique for reducing air resistance attributed to the vehicle configuration. The devices were on a 45 feet tractor-trailer and the emission test was done using PEMS equipment. Fuel economy was evaluated by introducing several devices to reduce outer air resistance. The test was conducted by changing the experimental method of SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test. As a result, air resistance decreased by at least 15 % and fuel economy improved by at least 13 %. This study sought to reduce greenhouse gas and improve fuel economy by applying several devices to a test vehicle to lower air resistance.

Shear resistance characteristic and ductility of Y-type perfobond rib shear connector

  • Kim, Sang-Hyo;Park, Se-Jun;Heo, Won-Ho;Jung, Chi-Young
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.497-517
    • /
    • 2015
  • This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

A Study on the Resistance Test Method for Planning Hull Model using the High Speed Towing Carriage (무인고속전차를 이용한 활주선 모형의 저항시험 기법 연구)

  • Lee, Young-Gill;Ha, Yoon-Jin;Jeong, Kwang-Leol;Chae, Soon-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • The resistance test of a high speed craft such as planing ship is performed with a high speed towing carriage instead of ordinary towing carriage because of the speed limitation. In the resistance test using high speed towing carriage, the model ship is fixed to the carriage to restrain the running attitude for enough measuring time. Such method is called fixed model test method. In the fixed model test method, to get the appropriate running attitude, the model test is iteratively repeated until the trim moment and lift force are close to zero. In this research, trim free model test method is investigated to reduce the number of iteration. And, the limitation of towing speed range in the trim free model test method is investigated.

Corrosion Resistance of SD460 Reinforcing Rod by Ceramic Coating (SD460 철근의 세라믹 코팅에 의한 내식성 향상연구)

  • Park, Ki Y.;Lee, Jong K.;Hong, Seok W.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.157-161
    • /
    • 2009
  • The corrosion resistance of reinforcing bar was studied to endure the marine environment during shipment. The red rust on the surface did not damage the adherence in the concrete structures, especially in highly alkaline environment, but made the consumer doubt of the quality. The passivation process by alkalization of the quenching water in the tempcore process failed to endure the long shipping period. The ceramic coating by sol-gel process improved the corrosion resistance without damaging the mechanical properties and adherence between concrete and reinfiorcing bar. Optimal concentration of the coating solution and coating temperature were tested. No additional energy was necessary for the coating process by spraying during cooling process, resulting simplified process and low cost. Salt spray test, cyclic corrosion test and atmospheric test were employed to confirm the resistance. The corrosion rates were presented by rating number and polarization resistance. The coating layer was examined by FIB, XRD and SEM etc.

An Evaluation of Pullout Behavior Characteristics of the Steel Strip Reinforcement Bolted with Braced Angles (버팀재 볼트 접합형 강재스트립 보강재의 인발거동특성 평가)

  • 김홍택;방윤경;정중섭;박시삼;김현조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.419-426
    • /
    • 2002
  • In this study, the steel strip reinforcement bolted with braced angles is displayed skin friction resistance as well as passive resistance through existing the steel strip reinforcement. To understand pullout behavior characteristics, friction effects between soil and reinforcement are evaluated with the width of reinforcement, magnitude of surcharge, and existence of passive resistance member through laboratory pullout test. To analyze interference effects for passive resistance member, various tests are carried on case that the number, the location, and the spacing of braced angles are different. Using this test result, pullout resistance factor is calculated to consider location of braced angles and degree of interference for spacing ratio.

  • PDF

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests

  • Niaz, Atif Khan;Lee, Woong;Yang, SeungCheol;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.358-364
    • /
    • 2021
  • In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.