Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00094

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests  

Niaz, Atif Khan (School of Materials Science and Engineering, Changwon National University)
Lee, Woong (School of Materials Science and Engineering, Changwon National University)
Yang, SeungCheol (School of Materials Science and Engineering, Changwon National University)
Lim, Hyung-Tae (School of Materials Science and Engineering, Changwon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.3, 2021 , pp. 358-364 More about this Journal
Abstract
In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.
Keywords
Anion Exchange Membrane; Water Electrolysis; Long-Term Test; Impedance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Zeng, D. Zhang, Prog. Energy Combust. Sci., 2010, 36(3), 307-326.   DOI
2 F. Razmjooei, A. Farooqui, R. Reissner, A. S. Gago, S.A. Ansar, K.A.Friedrich, ChemElectroChem., 2020, 7, 3951-3960.   DOI
3 Y.Ye, Y.A. Elabd, Macromolecules., 2011, 44(21), 8494-8503.   DOI
4 D.R. Dekel, S. Willdorf, U. Ash, M. Amar, S. Pusara, S. Dhara, S. Srebnik, C. E. Diesendruck, J. Power Sources., 2018, 375, 351-360.   DOI
5 H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, J. Meier-Haack, Sustain. Energy Fuels., 2020, 4(5), 2114-2133.   DOI
6 P. Fortin, T. Khoza , X. Cao, S.Y. Martinsen , A.O. Barnett, S. Holdcroft, J. Power Sources., 2020, 451, 227814.   DOI
7 Z. Liu, S.D. Sajjad, Y. Gao, H. Yang, J.J. Kaczur, R.I. Masel, The effect of membrane on an alkaline water electrolyzer, Int. J. Hydrog Energy., 2017, 42(50), 29661-29665.   DOI
8 L. Wang, T. Weissbach, R. Reissner, A. Ansar, A.S. Gago, S. Holdcroft, K.A.Friedrich, H, ACS Appl. Energy Mater., 2019, 2(11), 7903-7912.   DOI
9 D.Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, ED Baca, C. Fujimoto, Nat. Energy., 2020, 5(5), 378-385.   DOI
10 I.Vincent, A. Kruger, D. Bessarabov, Int. J. Hydrog Energy., 2017, 42(16), 10752-10761.   DOI
11 A. Carbone, S.C. Zingani, I. Gatto, S. Trocino, A.S. Arico, Int. J. Hydrog Energy., 2020, 45(16), 9285-9292.   DOI
12 M.K. Cho, H-Y. Park, H.J. Lee, H-J. Kim, A. Lim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, H.S. Park, J.H. Jang, J. Power Sources., 2018, 382, 22-29.   DOI
13 A.K Niaz, A. Akhtar, J-Y. Park, H-T. Lim, J. Power Sources., 2021, 481, 229093.   DOI
14 Z. Qi, A. Kaufman, J. Power Sources., 2003, 114(1), 21-31.   DOI
15 M.K. Cho, H-Y. Park, S. Choe, S.J. Yoo, J.Y. Kim, H-J. Kim, D. Henkensmeier, S.Y. Lee, Y.E. Sung, H.S. Park, J.H. Jang, J. Power Sources., 2017, 347, 283-290.   DOI
16 Z. Xu, Z. Qi, C. He, A. Kaufman, J. Power Sources., 2006, 156(2), 315-320.   DOI
17 M. Boaventura, A. Mendes, Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes, Int. J. Hydrogen Energy., 2010, 35, 11649-11660.   DOI
18 Z. Abdin, W. Merida, Energy Convers. Manag., 2019, 1961 1068-79.
19 C. Acar, I. Dincer, J. Clean Prod., 2019, 218, 835-49.   DOI
20 El-Emam RS, Ozcan H, J. Clean Prod., 2019, 220, 593-609.   DOI
21 S.E. Hosseini, M.A. Wahid, Renew. Sust. Energ. Rev.., 2016, 57, 850-66.   DOI
22 B. Zayat, D. Mitra, S.R. Narayanan, Inexpensive and Efficient Alkaline Water Electrolyzer with Robust SteelBased Electrodes. J. Electrochem. Soc., 2020, 167(11), 114513.
23 J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese J. Catal., 2018, 39(3), 390-394.   DOI
24 C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem., Int. Ed., 2014, 53(5), 1378 -1381.   DOI
25 M.S. Naughton, F.R. Brushett, P.J. Kenis, Carbonate resilience of flowing electrolyte-based alkaline fuel cells, J. Power Sources., 2011, 196(4), 1762-1768.   DOI
26 M. Carmo, D.L. Fritz, J. Mergel, Int. J. Hydrog. Energy., 2013, 38(12), 4901-4934.   DOI
27 S. Seetharaman, S.C. Raghu, K.A, J. Energy chem., 2016, 25(1), 77-84.   DOI
28 Y. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Adv. Mater., 2020, 33(6), 2000381.
29 I.V. Pushkareva, A.S. Pushkarev, S.A. Grigoriev, P. Modisha, D.G. Bessarabov, Int. J. Hydrog Energy., 2020, 45(49), 26070-26079.   DOI
30 J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim, Chem. Soc. Rev., 2020, 49, 9154-9196.   DOI
31 V.B. Silva, A. Rouboa, J. Electroanal. Chem., 2012, 671, 58-66.   DOI
32 J. Fan, S. Willdorf-Cohen, E. M. Schibli, Z. Paula, W. Li, T. J.G Skalski, A. T. Sergeenko, A. Hohenadel, B. J. Frisken, E. Magliocca, W.E. Mustain, C.E. Diesendruck, D.R Dekel, S. Holdcroft, Nat. Commun., 2019, 10(1), 1-10.   DOI
33 L. Al-Ghussain, Environ. Prog. Sustain. Energy., 2019, 38(1), 13-21.   DOI
34 Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.Y Wang, J. Am. Chem. Soc., 2013, 134(22), 9054-9057.   DOI
35 A. Lim, H-J. Kim, D. Henkensmeier. S.J. Yoo, J.Y. Kim, S.Y. Lee, Y-E. Sung, J.H. Jang, H.S. Park, J Ind Eng Chem., 2019, 76, 410-418.   DOI
36 Y. Li, Z. Kang, J. Mo, G. Yang, S. Yu, D.A. Talley, B. Han, F.-Y. Zhang, Int. J. Hydrog Energy., 2018, 43(24), 11223-11233.   DOI