• Title/Summary/Keyword: resistance sources

Search Result 336, Processing Time 0.029 seconds

Characterization of Sclerotinia sclerotiorum, an Emerging Fungal Pathogen Causing Blight in Hyacinth Bean (Lablab purpureus)

  • Prova, Ananya;Akanda, Abdul Mannan;Islam, Shaikhul;Hossain, Md. Motaher
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.367-380
    • /
    • 2018
  • Stems and pods of hyacinth bean cultivated in a farmer's field in Gazipur District, Bangladesh, were found rotted in nearly 5% hyacinth bean plants. A fungus having fluffy mycelium and large sclerotia was isolated from affected tissues. Combined results of morphological, molecular and pathological analyses identified the fungus as Sclerotinia sclerotiorum (Lib) de Bary. Inoculating the fungus on healthy hyacinth bean plants and pods reproduced the symptoms previously observed in the field. The three isolates obtained from naturally infected plants were cross inoculated in hyacinth bean, okra and African-American marigold and they were pathogenic to these hosts. The optimum temperature and pH for its growth were $20^{\circ}C$ and pH 5.0, respectively. Sclerotial development was favored at pH 5.0. Sucrose and mannitol were the best carbon sources to support hyphal growth, while glucose was the most favourable for sclerotial development. The hyacinth bean genotypes, HB-82 (Rupban Sheem) and HB-102 were found highly resistant, while HB-94 (Ashina) was moderate resistant to the fungus. Finally, S. sclerotiorum was sensitive to Bavistin, Dithane M-45 and Rovral fungicides and Ca in the form of $CaCl_2$. This observation could possibly aid in eliminating field loss in hyacinth bean caused by an emerging pathogenic fungus S. sclerotiorum.

Immunoadjuvant Effect of Platycodin D from Platycodon grandiflorum (Platycodin D 길경성분의 면역보조효과)

  • Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.59 no.4
    • /
    • pp.170-176
    • /
    • 2015
  • In vaccine development, the major points may be induction of effective and increased levels of antibody production. This is especially the case when the antigenic sources are carbohydrates. For many years, thus, we have researched various types of formulations such as liposomal and conjugate vaccines. However, the fastidious formulation process and high costs are a problem. For this reason, there is currently a focus on utilizing immunoadjuvants. In this present study, we tested if platycodin D (PLD) from Platycodon Radix have immunoadjuvant activity against the cell wall of Candida albicans (CACW). The resulting data showed that in the murine model of antibody production, CACW combined with PLD [CACW/PLD/IFA] increased the production of antibodies specific to C. albicans when compared to the antibody production by [CACW/IFA]-induction, which was used as a negative control (P<0.05). In the case of [CACW/PLD/IFA], the antibody production was 1.4 times as that of the CFA. In addition, formulations containing either had a prolonged antibody inducing activity maintaining the initial titers of antibody as compared to the CFA formula. Cytokine profiling with the antisera displayed that the PLD produced both Th1 and Th2 immunoresponses, but Th1 dominant was much greater (P<0.05). Furthermore, [CACW/PLD/IFA] formula enhanced resistance of mice against disseminated candidiasis, whereas the CFA had no such effect. In conclusion, PLD has an immunologic activity, which is protective against the disease. Thus, PLD can be a goof candidate for a new immunoadjuvant in development of the fungal vaccine.

The effects of various thermal parameters on coil temperature rise in TEFC induction motor (여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구)

  • Yun, Myeong-Geun;Ha, Gyeong-Pyo;Go, Sang-Geun;Lee, Yang-Su;Han, Song-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida;Yrjala, Kim;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.

Antimicrobial Activity of the Cell Organelles, Lysosomes, Isolated from Egg White

  • Yoon, Ji-Hee;Park, Jae-Min;Kim, Ki-Ju;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1364-1368
    • /
    • 2009
  • Lysosomes, as a cell organelle type, are safe biological control agents that may be possible replacements for chemical antimicrobial agents because they are simply isolated from egg white. In this study, it was found that the lysosomes isolated from egg white exhibited pH-dependent antimicrobial activity, with the optimal activity found at pH 6.0. The efficiency of lysosomes in inhibiting bacterial growth and activity was evaluated over a 12-h treatment period. Seven different microorganisms were used as bacterial strains, and the lysosomes showed a significant antimicrobial effect against all strains. In addition, the antimicrobial activity was maintained for 100 days, and there did not appear to be any resistance of E. coli to the lysosomal activity up to the eighth culture. However, the lysosomes did not affect the viability of mammalian cells, suggesting the biocompatibility of lysosomes. These highly effective lysosomes have a bright future in the application of novel antimicrobial sources as a cell organelle type.

Occurrence of Root-knot Nematodes on Fruit Vegetables Under Greenhouse Conditions in Korea (과채류 시설재배지의 뿌리혹선충 문제)

  • 김동근
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2001
  • Meloidogyne arenaria race 2 (59%) is widely distributed, followed by M. incognita race 1 (23%), and an unknown race of M. incognita (18 %) in greenhouses in southern Korea. The key character to distinguish between M. arenaria and M. incognita is excretory pore in female head. When oriental melon, Cucumis melo L., grafted on Shintozoa (Cucurbit maxima x Cu. moschata) is transplanted in February in a plastic tunnel inside a greenhouse infested with M. arenaria, nematodes produced egg masses on roots at 40 days after transplanting and the soil juveniles (J2) population reach maximum in July to 3,817/100 ㎤. Juveniles are distributed relatively uniform over the 180-cm-wide row horizontally and the highest density occurs at 0-25 cm soil depth. For the control of root-knot nematodes, rice rotation, solarization, and soil addition treatments are the most effective (P=0.05); treatments reduce number of J2 over 90% and increase yield two times. Corn retation, fosthiazate, and soil drying treatment are moderately effective, while sesame and green onion rotations are not effective. The relationship between M. arenaria and yield of oriental melon is adequately described by a linear regression model. In the test with wild Cucumis genetic sources introduced from U.S.Dept. of Agriculture (USDA), one of C.heptadactylus, two of C.anguria, two of C. anguria var. longaculeatus, nine of C. metuliferus are resistant to both species of root-knot nematodes.

  • PDF

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Antiglycation and antioxidant activity of four Iranian medical plant extracts

  • Safari, Mohammad Reza;Azizi, Omid;Heidary, Somayeh Sadat;Kheiripour, Nejat;Ravan, Alireza Pouyandeh
    • Journal of Pharmacopuncture
    • /
    • v.21 no.2
    • /
    • pp.82-89
    • /
    • 2018
  • Objective: Diabetes mellitus (DM) is the most common metabolic disorder that defined by chronic hyperglycemia for the deficiency in insulin secretion or resistance. Hyperglycemia could induce non-enzymatic glycation of proteins. It has been suggested that some traditional plants can improve blood glucose and inhibit glycation process. This work evaluates and compares the anti-glycation activities of four Iranian plant extracts in vitro. Methods: The methanolic extract of "Fumaria officinalis, Stachys lavandulifolia, Salvia hydrangea and Rosa Damascene" was prepared in three different concentrations. Phenolic, flavonoids content and antioxidant activity were evaluated. The multistage glycation markers- fructosamines (early stage), protein carbonyls (intermediate stage) and ${\beta}$ aggregation of albumin were investigated in the bovine serum albumin (BSA)/ glucose systemt. Results: All plants showed the high potency of scavenging free radicals and glycation inhibition in the following order: Fumaria officinalis> Rosa Damascene> Stachys lavandulifolia > Salvia hydrangea. There was a significant correlation between antioxidant and anti-glycation activity. Also, the antioxidant and anti-glycation capacity of extracts correlated with total phenolic and flavonoids content. Conclusion: Our findings demonstrated that the studied plants are good sources of anti-glycation and antioxidant compounds and, these properties can primarily attributable to phenolics, particularly flavonoids.

Effect of Ammonia Concentration in Rearing Water on Growth and Blood Components of the Parrotfish Oplegnathus fasciatus (사육수의 암모니아 농도가 돌돔(Oplegnathus fasciatus)의 성장과 혈액성분에 미치는 영향)

  • Park, Seongdeok;Kim, Pyong Kih;Jeon, Joong-Kyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.840-846
    • /
    • 2014
  • This study investigated growth and hematological changes in parrotfish Oplegnathus fasciatus (~200 g/fish) reared under different total ammonia nitrogen (TAN) concentrations (0, 4, or 8 mg/L) for 6 weeks. Survival rates of parrotfish in all experimental groups did not significantly differ, as they were all ~100%. Although specific growth rate (SGR), weight gain, and daily feed intake in the high TAN concentration group (TAN8) were significantly lower than in the other two groups, there was no significant difference between the TAN4 group and the control group, (TAN0), indicating that parrotfish have a strong resistance to ammonia toxicity. As for temporal changes of the major blood components, cortisol increased as a result of stress caused by the high ammonia concentration in the TAN8 group. For this reason, the concentrations of energy sources such as glucose and total cholesterol were reduced. However, there was little difference among all experimental groups in concentrations of liver function glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT), and nutrient factors, such as total protein and albumin.