• Title/Summary/Keyword: resistance of acid

Search Result 1,937, Processing Time 0.031 seconds

Influence of Cement types on the Resistance to Acid and Sulfate (산 및 황산염 저항성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Yu, Kyung-Geun;Lee, Kwang-Myong;Cha, Soo-Won;Chol, Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.421-424
    • /
    • 2008
  • The purpose of this experimental research is to investigate the influence of cement types on the resistance to acid and sulfate. For this purpose, concrete specimens with three types of cement such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were made for water-binder(W/B) ratios of 32% and 43%, and then according to JSTM C 7401, the appearance change and ratio of mass change of them were estimated through the immersion tests by 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solution, respectively. It was observed from the test result that the resistance against acid and sulfate increased with decreasing W/B ratio and those of BBC and TBC concretes were better than the case of OPC concrete from immersion tests of 91 days.

  • PDF

Physiological Characterization of an AtPGR from Arabidopsis Involved in Pathogen Resistance (애기장대 AtPGR 단백질의 병 저항성에 관한 생리적 특성 분석)

  • Chung, Moon-Soo;Kim, Cheol-Soo
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1295-1300
    • /
    • 2011
  • The AtPGR gene is induced by pathogen infection, jasmonic acid and salicylic acid treatment and may therefore play a role in plant defense responses. Arabidopsis thaliana Plasma membrane Glucose-responsive Regulator (AtPGR) was previously isolated from Arabidopsis, which confers glucose insensitivity on plants. To study its biological functions directly, we have characterized both loss-of-function RNAi mutant and gain-of-function transgenic overexpression plants for AtPGR in Arabidopsis. The AtPGR-overexpressing plants displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae as measured by a significant decrease in both bacterial growth and symptom development as compared to those in wild-type and RNAi plants. The enhanced resistance in the gain-of-function transgenic plants was associated with increased induction of SA-regulated PDF1.2 and JA-regulated PR1 by the bacterial pathogen. Thus, pathogen-induced AtPGR plays a positive role in defense responses to P. syringae.

Applicability of Temperature Correction Trans-membrane Pressure as a Fouling Index of Membrane Water Treatment Process (막여과 정수처리 공정에서 온도보정차압 식의 파울링 지표로서의 활용성 검토)

  • Kim, Minjae;Lim, Jae-Lim;Lee, Kyung-Hyuk;Lee, Young-Joo;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Temperature correction trans-membrane pressure (TC-TMP) is frequently used as a fouling index in membrane water treatment plants. TC-TMP equation is derived based on an assumption that the total membrane resistance (i.e. the sum of the intrinsic membrane resistance and fouling resistance) is not affected by temperature. This work verified the validity of this assumption using microfiltration (MF) and ultrafiltration (UF) membranes with and without fouling. The foulants used in the work were kaolin (inorganic) and humic acid (organic). The intrinsic resistances of MF and UF membranes remains at constant values regardless of temperature change. When the same amount of foulants were accumulated on the membrane, inorganic fouling resistance with kaolin was constant regardless of temperature change while organic fouling resistance with humic acid decreased at higher temperatures, which means that TC-TMP cannot be used as a fouling index when organic fouling occurs in a real field application. Since TC-TMP underestimates the amount of fouling at higher temperatures, more attention should be necessary in the operation of membrane water treatment plant in a hotter season like summer.

Antimicrobial-resistant Escherichia coli isolated from dogs and cats at animal hospitals in Daegu (대구지역 동물병원에서 입원중인 개와 고양이로부터 분리된 항생제 내성 대장균)

  • Cho, Jae-Keun;Kim, Jeong-Mi;Kim, Hwan-Deuk;Kim, Kyung-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • This study was carried out to investigate the antimicrobial resistance profiles and resistance genes in 62 Escherichia coli isolated from dogs and cats hospitalized at animal hospitals in Daegu. E. coli isolates showed high resistance to nalidixic acid (46.8%) and ampicillin (45.2%). Resistance to the other antimicrobial agents was less than 30%, and no resistant isolates were detected for imipenem and amikacin. Of the 28 ampicillin-resistant isolates, TEM and CTX-M genes were detected in 16 (57.1%) and 11 (39.3%), respectively. The aadA gene was found in 4 (26.7%) of 15 gentamicin-resistant isolates, and strA-strB gene was found in 10 (66.7%) isolates. The sul I and sul II genes were detected in 11 (61.1%) and 14 (77.8%) of 18 trimethoprim/sulfamethoxazole-resistant isolates, and tetB gene in 9 (81.8%) of 11 minocycline-resistant isolates, and cmlA gene in 2 (22.2%) of 8 chloramphenicol-resistant isolates. The qnrB and qnrS genes were found in 3 (10.3%) and 1 (3.4%) of 28 nalidixic acid-resistant isolates, respectively. Whereas, none of the SHV, CMY-2, tetA, dfr Ia and dfr VII, and qnrA genes were found. Our results show a wide variety of resistance genes in E. coli isolates from dogs and cats. This study also represents the first report of qnrB and qnrS gene producing E. coli isolates from dogs in republic of Korea.

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

Insecticide Resistance in Increasing Interest

  • Lee, Sung-Eun;Kim, Jang-Eok;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.105-112
    • /
    • 2001
  • Insect pests can be controlled through direct application of insecticides. Insect control by residual protectants is relatively inexpensive and has an advantage of destroying all stages of infestations. The efficacy of control is largely determined by the concentration of insecticides to which the pest species is exposed. A reduction in the period of control in the field afforded by a specific level of a protectant indicates that resistance has developed. An increase in the level of protectant is required to maintain control, and the efficacy of currently used insecticides has been severely reduced by insecticide resistance in pest species. Development of resistance to particular insecticide varies with species because insecticide resistance is often correlated with increased levels of certain enzymes, which are cytochrome P450-dependent monooxygenases, glutathione S-transferases and esterases. Some sections of insecticide molecules can be modified by one or more of these primary enzymes. A reduction in the sensitivity of the action site of a xenobiotic also constitutes a mechanism of resistance. Acetylcholinesterase is a major target site for insecticide action, as are axonal sodium ion channels and ${\gamma}$-aminobutyric acid receptors. Development of reduced sensitivity of these target sites to insecticides usually occurs. This review not only may contribute to a better understanding of insecticide resistance, but also illustrates the gaps still present for a full biochemical understanding of the resistance.

  • PDF

Acidic and Catalytic Properties of Modified Silica Catalyst with Benzenesulfo Groups

  • Sohn, Jong-Rack;Ryu, Sam-Gon;Pae, Young-Il;Choi, Sang-June
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.403-406
    • /
    • 1990
  • Two types of new silica catalysts modified with benzenesulfonic acid derivatives were prepared by esterification or phenylation followed by sulfonation. Both catalysts thus prepared were tested as acid catalysts for 2-propanol dehydration and cumene dealkylation reactions. B catalyst () were more active than A catalyst (). Highter catalytic activity for B catalyst may be accounted for by higher resistance to water, higher acid strength, more acidity, and better thermal stability as compared with A catalyst.

Study on antimicrobial resistance of Escherichia coli isolated from domestic beef on sale (2) (유통되는 쇠고기에서 분리한 대장균의 항생제 내성 조사.연구 (2))

  • Kim, Hong-Tae;Jung, Kyung-Tae;Lee, Dong-Soo;Lee, Keun-Woo
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.1
    • /
    • pp.93-102
    • /
    • 2009
  • In this study, antimicrobial resistance of E. coli isolated from domestic beef on sale in Busan and Gyeongnam province was investigated from March to October 2008. A total of 400 beef samples were collected for the monitoring of antimicrobial resistance, and 39 (9.8%) strains of E. coli were isolated. Antimicrobial resistance test was carried out by agar disc diffusion method with 17 antimicrobials. In general, E. coli isolates showed the highest antimicrobial resistance to tetracycline (85.3%), followed by doxycycline (76.5%), streptomycin (61.8%) and sulfamethoxazole/trimethoprim (61.8%). Then they showed higher resistance to several antimicrobials like kanamycin and neomycin (55.9%). However, They had low antimicrobial resistance to amikacin (8.8%), amoxicillin/clavulanic acid (2.9%). Of 39 isolates, 31 (79.5%) were resistant to more than 2 antimicrobials. Among 17 antimicrobials examined, tetracyclines were the most resistant, followed by aminoglycosides, sulfonamides. The resistance was seemed to be correlated to amounts of antimicrobial use. In the result of this study, we suggest that there be need to regulate the abuse of antimicrobial on food-producing animals in Korea because the concern on antimicrobial resistant is gradually increased worldwide.

Antimicrobial Resistance and Multi-Drug Resistance Patterns of Pathogenic Bacteria Isolated from Food Poisoning Patients in Incheon (인천지역 식중독 환자에서 분리한 병원성 세균의 항생제 내성 및 다제 내성 양상)

  • Huh, Myung-Je;Oh, Sung-Suck;Jang, Jae-Seon
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.132-136
    • /
    • 2013
  • Antimicrobial resistance and multi-drug resistance patterns have been carried out on total of 210 isolated of Salmonella spp. and pathogenic E. coli isolated from food poisoning patients on January through December 2012 in Incheon, Korea. The highest percentage of antibiotics resistance was found to the following antimicrobial agents: tetracycline 43.8%, ampicillin 34.8%, nalidixic acid 23.8%, sulfamethoxazole/trimethoprim and chloramphenicol 12.4%, and ampicillin/sulbactam 11.4%. The highest percentage of resistance was 37.5% to ampicillin for Salmonella spp. and 59.0% to tetracycline for pathogenic E. coli. Overall the multidrug resistance rates of 1 drug was 26.2%, 2 drugs 9.0%, 3 drugs 9.5%, 4 drugs 7.1%, and 5 or more drugs 12.46%. The multi-drug (MDR) strains to four or more antimicrobial agents among the resistant organisms were quite high: 15.9% and 22.1% for Salmonella spp. and pathogenic E. coli, respectively. The study implies that limitation of unnecessary medication use is pertinent in order to maintaining the efficacy of drugs.

Effect of Arachidonic Acid on Renal Function of Dog (Arachidonic Acid의 개 신장기능에 미치는 영향)

  • Ko, Suk-Tai;Park, Hwa-Sook
    • YAKHAK HOEJI
    • /
    • v.34 no.4
    • /
    • pp.252-261
    • /
    • 1990
  • Arachidonic acid which is precursor of prostaglandins, when administered ($100.0\;{\mu}g/kg$, or $100.0\;{\mu}g/kg/min$) intravenously, did not influence on renal function of dog. Arachidonic acid, when infused ($10.0\;{\mu}g/kg/min$) into a renal artery, produced marked diuretic action accompanied with augmentation of renal plasma flow and with little changed glomerular filtration rate, and exhibited the increased clearances of osmolar substance and free water, and the decreased reabsorption rates of sodium and potassium in renal tubules in only experimental kidney, but did not influenced at all in control kindey. The diuretic acition of arachidonic acid infused into a renal artery was not affected by pretreatment of indomethacin (10.0 mg/kg. i.v) which is inhibitor of cyclooxygenase. Above results suggest that arachidonic acid infused into a renal artery produced diuretic action through direct renal hemodynamic changes, that is mediated by reduction of postglomerular resistance being caused by dilation of vas efferense.

  • PDF