• Title/Summary/Keyword: resistance gene

Search Result 1,720, Processing Time 0.025 seconds

Cloning and Characterization of the Tetracycline Resistant Gene, tetB, from Vibrio parahaemolyticus

  • Kang, Min-Seung;Park, Kun-Ba-Wui;Hwang, Hye-Jin;Bae, Hyang-Nam;Lim, Keun-Sik;Eom, Sung-Hwan;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • A tetracycline resistant Vibrio parahaemolyticus, capable of growing on TCBS medium containing tetracycline, was isolated from cultivated fishes. A gene responsible for the tetracycline resistance was cloned from chromosomal DNA of the V. parahaemolyticus strain using Escherichia coli KAM3, which lacks major multi-drug efflux pumps (${\Delta}acrB$) as host cells. The nucleotide sequence and homology analysis revealed an open reading frame (ORF) for tetracycline resistance protein (TetB). In order to characterize the antibiotic resistance of TetB originated from the V. parahaemolyticus strain, the gene was sub cloned into plasmid pSTV28. The resulting plasmid was designated as pSTVTetB and transformated into E. coli KAM3. E. coli KAM3 cells harboring the recombinant plasmid pSTVTetB are able to grow on plates containing tetracycline and oxytetracycline but not doxycycline, indicating that the tetB gene confers the tetracycline- and oxytetracycline-resistance to the host cell.

Studies on QTLs for Bakanae Disease Resistance with Populations Derived from Crosses between Korean japonica Rice Varieties

  • Dong-Kyung Yoon;Chaewon Lee;Kyeong-Seong Cheon;Yunji Shin;Hyoja Oh;Jeongho Baek;Song-Lim Kim;Young-Soon Cha;Kyung-Hwan Kim;Hyeonso Ji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.201-201
    • /
    • 2022
  • Rice bakanae disease is a serious global threat in major rice-cultivating regions worldwide causing high yield loss. It is caused by the fungal pathogen Fusarium fujikuroi. Varying degree of resistance or susceptibility to bakanae disease had been reported among Korean japonica rice varieties. We developed a modified in vitro bakanae disease bioassay method and tested 31 Korean japonica rice varieties. Nampyeong and Samgwang varieties showed highest resistance while 14 varieties including Junam and Hopum were highly susceptible with 100% mortality rate. We carried out mapping QTLs for bakanae disease resistance with four F2:F3 populations derived from the crosses between Korean japonica rice varieties. The Kompetitive Allele-Specific PCR (KASP) markers developed in our laboratory based on the SNPs detected in Korean japonica rice varieties were used in genotyping F2 plants in the populations. We found four major QTLs on chromosome 1, 4, 6, and 9 with LOD scores of 21.4, 6.9, 6.0, and 60.3, respectively. In addition, we are doing map-based cloning of the QTLs on chromosome 1 and 9 which were found with Junam/Nampyeong F2:F3 population and Junam/Samgwang F2:F3 population, respectively. These QTLs will be very useful in developing bakanae disease resistant high quality rice varieties.

  • PDF

Antimicrobial-resistant Escherichia coli isolated from dogs and cats at animal hospitals in Daegu (대구지역 동물병원에서 입원중인 개와 고양이로부터 분리된 항생제 내성 대장균)

  • Cho, Jae-Keun;Kim, Jeong-Mi;Kim, Hwan-Deuk;Kim, Kyung-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • This study was carried out to investigate the antimicrobial resistance profiles and resistance genes in 62 Escherichia coli isolated from dogs and cats hospitalized at animal hospitals in Daegu. E. coli isolates showed high resistance to nalidixic acid (46.8%) and ampicillin (45.2%). Resistance to the other antimicrobial agents was less than 30%, and no resistant isolates were detected for imipenem and amikacin. Of the 28 ampicillin-resistant isolates, TEM and CTX-M genes were detected in 16 (57.1%) and 11 (39.3%), respectively. The aadA gene was found in 4 (26.7%) of 15 gentamicin-resistant isolates, and strA-strB gene was found in 10 (66.7%) isolates. The sul I and sul II genes were detected in 11 (61.1%) and 14 (77.8%) of 18 trimethoprim/sulfamethoxazole-resistant isolates, and tetB gene in 9 (81.8%) of 11 minocycline-resistant isolates, and cmlA gene in 2 (22.2%) of 8 chloramphenicol-resistant isolates. The qnrB and qnrS genes were found in 3 (10.3%) and 1 (3.4%) of 28 nalidixic acid-resistant isolates, respectively. Whereas, none of the SHV, CMY-2, tetA, dfr Ia and dfr VII, and qnrA genes were found. Our results show a wide variety of resistance genes in E. coli isolates from dogs and cats. This study also represents the first report of qnrB and qnrS gene producing E. coli isolates from dogs in republic of Korea.

Inhibition of Oligomycin Biosynthesis by olmA5 Gene Knock-out in Streptomyces avermitilis (Streptomyces avermitilis에서 olmA5 Gene의 Knock-out에 의한 Oligomycin 합성 억제)

  • Kang, Hyun-Woo;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • Streptomyces is well known for their ability to synthesize enormous varieties of antibiotics as secondary metabolites. Among them, S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. However, S. avermitilis also produces oligomycin, which is a potential toxic inhibitor of oxidative phosphorylation in mammalian cells. Therefore, we decided to disrupt oligomycin synthetase gene to prevent co-production of oligomycin in S. avermitilis. To create plasmid for disruption, the smallest gene of oligomycin synthetase gene cluster was obtained by PCR from S. avermitilis chromosome. Then, apramycin resistance gene was inserted in oligomycin synthetase gene for selection. After transformation of this plasmid, oligomycin synthetase gene (olmA5) in the chromosome was displaced with disruption cassette on the plasmid via homologous recombination. As a result of this gene replacement, we obtained mutants (olmA5::apra) that no longer makes the toxic oligomycin. And the mutants confirmed by PCR and HPLC analysis. However, showed no increasement of avermectin production in the mutant was observed.

Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis

  • Kim, Ga-Yeon;Lee, Chong Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.6
    • /
    • pp.223-228
    • /
    • 2015
  • Purpose: The goal of this study was to characterize the patterns of antimicrobial resistance and virulence genes in samples of Staphylococcus aureus (S. aureus) isolated from periodontitis patients. Methods: From July 2015 to August 2015, oral saliva was collected from a total of 112 patients diagnosed with periodontitis, including 80 outpatients in dental hospitals and 32 patients in dental clinics located in Seoul and Cheonan. The samples were subjected to a susceptibility test to evaluate the prevalence of antimicrobial resistance, and the pathogenic factors and antimicrobial resistance factors in the DNA of S. aureus were analyzed using polymerase chain reaction. Results: A susceptibility test against 15 antimicrobial agents showed that 88% of cultures were resistant to ampicillin, 88% to penicillin, and 2% to oxacillin. Resistance to at least two drugs was observed in 90% of cultures, and the most common pattern of multidrug resistance was to ampicillin and penicillin. Enterotoxins were detected in 65.9% of samples. The cell hemolysin gene hld was detected in 100% of cultures and hla was detected in 97.6% of samples. All strains resistant to penicillin and ampicillin had the blaZ gene. The aph(3')IIIa gene, which encodes an aminoglycoside modifying enzyme, was detected in 46.3% of samples. Conclusions: In the treatment of oral S. aureus infections, it is important to identify the pathogenic genes and the extent of antimicrobial resistance. Furthermore, it is necessary to study patterns of antimicrobial resistance and cross-infection in the context of periodontological specialties in which antimicrobials are frequently used, such as maxillofacial surgery, where the frequency of antimicrobial use for minor procedures such as implant placement is increasing.

Integrative Meta-Analysis of Multiple Gene Expression Profiles in Acquired Gemcitabine-Resistant Cancer Cell Lines to Identify Novel Therapeutic Biomarkers

  • Lee, Young Seok;Kim, Jin Ki;Ryu, Seoung Won;Bae, Se Jong;Kwon, Kang;Noh, Yun Hee;Kim, Sung Young
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2793-2800
    • /
    • 2015
  • In molecular-targeted cancer therapy, acquired resistance to gemcitabine is a major clinical problem that reduces its effectiveness, resulting in recurrence and metastasis of cancers. In spite of great efforts to reveal the overall mechanism of acquired gemcitabine resistance, no definitive genetic factors have been identified that are absolutely responsible for the resistance process. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets for cancer cell lines with acquired gemcitabine resistance, using the R-based RankProd algorithm, and were able to identify a total of 158 differentially expressed genes (DEGs; 76 up- and 82 down-regulated) that are potentially involved in acquired resistance to gemcitabine. Indeed, the top 20 up- and down-regulated DEGs are largely associated with a common process of carcinogenesis in many cells. For the top 50 up- and down-regulated DEGs, we conducted integrated analyses of a gene regulatory network, a gene co-expression network, and a protein-protein interaction network. The identified DEGs were functionally enriched via Gene Ontology hierarchy and Kyoto Encyclopedia of Genes and Genomes pathway analyses. By systemic combinational analysis of the three molecular networks, we could condense the total number of DEGs to final seven genes. Notably, GJA1, LEF1, and CCND2 were contained within the lists of the top 20 up- or down-regulated DEGs. Our study represents a comprehensive overview of the gene expression patterns associated with acquired gemcitabine resistance and theoretical support for further clinical therapeutic studies.

Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

  • Jabeen, Nyla;Chaudhary, Zubeda;Gulfraz, Muhammad;Rashid, Hamid;Mirza, Bushra
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.252-258
    • /
    • 2015
  • This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to nontransgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3.

Identification of potential molecular markers for disease resistance in giant gourami through major histocompatibility complex (MHC) II gene analysis

  • Ikhsan Khasani;Rita Febrianti;Sularto;Wahyu Pamungkas;Keukeu Kaniawati Rosada
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • Research to obtain molecular markers related to the major histocompatibility complex (MHC) gene in both strains of gourami is essential to increase the success of the selection program of disease resistance traits. Using a completely randomized design (CRD), the challenge test consists of four treatments and seven replications. The treatment was Jambi gourami injected with PBS (KJ), Kalimantan gourami injected with PBS (KK), Jambi strain injected with Aeromonas hydrophila (GJ), and Kalimantan strain injected with A. hydrophila (GK). The GJ population was more resistant to A. hydrophila than the GK population. The MHC II gene was detected in both test strains (GJ and GK), both resistant and susceptible fish. However, there were differences in the results of amplifying the MHC II gene in susceptible and resistant fish. Two DNA fragments approximately 400 and 585 bp were detected in the genome of susceptible fish, while in the genome of susceptible fish, only one DNA fragment was detected (400 bp). Therefore, the MHC II gene fragment with a size of about 585 bp can be used as a potential candidate for specific molecular markers to obtain resistance to A. hydrophila bacteria in the giant gourami.

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Virulence Factors and Antimicrobial Resistance of Vibrio parahaemolyticus Isolated from Commercial Fisheries Products (시판수산물에서 분리한 Vibrio parahaemolyticus의 병원성 인자와 항균제 내성 현황)

  • Lee, Ye Ji;Kim, Eunheui
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.596-604
    • /
    • 2019
  • Vibrio parahaemolyticus causes food poisoning, mainly via marine fisheries products. We investigated the virulence factors and drug resistance of V. parahaemolyticus isolated from fisheries products purchased from the Yeosu Fisheries Market. The isolates were identified using a variety of biochemical tests and the detection of toxR and hns gene. The presence of the virulence factor-encoding genes tdh and trh in the isolates was also investigated by PCR. The resistance of the isolates to 13 antibacterial agents was tested using the disc-diffusion method and carriage of β-lactamase genes and class 1 integrons by ampicillin-resistant isolates was investigated by PCR. Four of seventeen isolates identified as V. parahaemolyticus by biochemical tests produced a species-specific PCR band. Those isolates showed >98% 16S rRNA gene sequence homology with V. parahaemolyticus and only one isolate harbored the tdh gene. All of the V. parahaemolyticus isolates were resistant to ampicillin and amoxicillin; moreover, VPA0477, a class A β-lactamase gene, and class 1 integrons were detected. Therefore, V. parahaemolyticus from fisheries products represents a low risk to human health. Also, V. parahaemolyticus is likely to develop multidrug resistance because it has class 1 integrons.