• Title/Summary/Keyword: resistance curve

Search Result 780, Processing Time 0.038 seconds

N-terminal Pro-B-type Natriuretic Peptide as a Predictive Risk Factor in Fontan Operation (Fontan 수술시 위험 예측인자로서의 N-Terminal Pro-B-type Natriuretic Peptide의 유용성)

  • Jang, Gi Young;Lee, Jae Young;Kim, Soo Jin;Shim, Woo Sup
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.12
    • /
    • pp.1362-1369
    • /
    • 2005
  • Purpose : This study aimed to investigate the correlation between the plasma level of N-terminal pro-B-type natriuretic peptide(pro-BNP) and several known risk factors influencing outcomes after Fontan operations, and to assess whether pro-BNP levels can be used as predictive risk factors in Fontan operations. Methods : Plasma pro-BNP concentrations were measured in 35 patients with complex cardiac anomalies before catheterization. Cardiac catheterization was performed in all subjects. Mean right atrium pressure, mean pulmonary artery pressure(PAP), and ventricular end-diastolic pressure(EDP) were obtained. Cardiac output and pulmonary vascular resistance were calculated by Fick method. Results : Plasma pro-BNP levels exhibited statistically significant positive correlations with mean PAP(r=0.70, P<0.001), pulmonary vascular resistance(r=0.57, P<0.001), RVEDP(r=0.63, P<0.001), LVEDP(r=0.74, P<0.001), and cardiothoracic ratio(r=0.71, P<0.001). The area under the ROC curve using pro-BNP level to differentiate risk groups in Fontan operations was high : 0.868(95 percent CI, 0.712-1.023, P<0.01). The cutoff value of pro-BNP concentrations for the detection of risk groups in Fontan operations was determined to be 332.4 pg/mL(sensitivity 83.3 percent, specificity 82.7 percent). Conclusion : These data suggest that plasma pro-BNP levels may be used as a predictive risk factor in Fontan operations, and as a guide to determine the mode of therapy during follow-up after Fontan operations.

Development of the feedback resistant pheAFBR from E. coli and studies on its biochemical characteristics (E. coli 유래 pheA 유전자의 되먹임제어 저항성 돌연변이의 구축과 그 단백질의 생화학적 특성 연구)

  • Cao, Thinh-Phat;Lee, Sang-Hyun;Hong, KwangWon;Lee, Sung Haeng
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The bifunctional PheA protein, having chorismate mutase and prephenate dehydratase (CMPD) activities, is one of the key regulatory enzymes in the aromatic amino acid biosynthesis in Escherichia coli, and is negatively regulated by an end-product, phenyalanine. Therefore, PheA protein has been thought as useful for protein engineering to utilize mass production of essential amino acid phenylalanine. To obtain feedback resistant PheA protein against phenylalanine, we mutated by using random mutagenesis, extensively screened, and obtained $pheA^{FBR}$ gene encoding a feedback resistant PheA protein. The mutant PheA protein contains substitution of Leu to Phe at the position of 118, displaying that higher affinity (about $290{\mu}M$) for prephenate in comparison with that (about $850{\mu}M$) of wild type PheA protein. Kinetic analysis showed that the saturation curve of $PheA^{FBR}$ against phenyalanine is hyperbolic rather than that of $PheA^{WT}$, which is sigmoidal, indicating that the L118F mutant enzyme has no cooperative effects in prephenate binding in the presence of phenylalanine. In vitro enzymatic assay showed that the mutant protein exhibited increased activity by above 3.5 folds compared to the wild type enzyme. Moreover, L118F mutant protein appeared insensitive to feedback inhibition with keeping 40% of enzymatic activity even in the presence of 10 mM phenylalanine at which the activity of wild type $PheA^{WT}$ was not observed. The substitution of Leu to Phe in CMPD may induce significant conformational change for this enzyme to acquire feedback resistance to end-product of the pathway by modulating kinetic properties.

Anti-diabetic effects of Allium tuberosum rottler extracts and lactic acid bacteria fermented extracts in type 2 diabetic mice model (제2형 당뇨질환모델 db/db 마우스에서 부추 추출물 및 유산균 발효물의 항당뇨 효과)

  • Kim, Bae Jin;Jo, Seung Kyeung;Jeong, Yoo Seok;Jung, Hee Kyoung
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.134-144
    • /
    • 2015
  • The anti-diabetic effects of Allium tuberosum Rottler extracts (ATE) and ATE fermented with lactic acid bacteria in db/db mice were evaluated. The electron donating activity of ATE fermented with Lactobacillus plantarum, and Lactobacillus casei, respectively, increased compared to that of ATE, but the superoxide radical scavenging activity of the ATE incubated with L. plantarum decreased. The superoxide radical scavenging activity of the ATE fermented with both L. plantarum and L. casei was similar to that of the ATE. Therefore, fermented ATE (FATE) was prepared for in vivo testing by incubating it with both L. plantarum and L. casei. The db/db mice were divided into six groups: normal (non-diabetic mice), diabetic control (DM), and four experimental groups administered 200 or 400 mg/kg/day ATE (ATE200 and ATE400) and 200 or 400 mg/kg/day FATE (FATE200 and FATE400). Weight gain was significantly inhibited in the FATE200 group compared with that in the other db/db mice groups (p<0.05). The areas under the curve of the ATE400 and FATE400 groups were significantly smaller than that of the DM group in the glucose tolerance evaluation. The serum glucagon-like peptide-1 levels in the ATE400 and FATE400 groups increased. These results indicate that administering ATE and FATE may be effective against anti-hyperglycemia by regulating insulin resistance. In particular, FATE may be beneficial for controlling obesity in type 2 diabetes.

Effect of Hot Water and Microwave Heating on the Inactivation of Enterobacter sakazakii in Reconstituted Powdered Infant formula and Sunsik (열수(熱水)와 마이크로웨이브 가열이 조제분유 및 선식 용해 중 Enterobacter sakazakii 사멸에 미치는 영향)

  • Kim, Jung-Beom;Park, Yong-Bae;Lee, Myung-Jin;Kim, Ki-Cheol;Huh, Jeong-Weon;Kim, Dae-Hwan;Lee, Jong-Bok;Kim, Jong-Chan;Choi, Jae-Ho;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • Enterobacter sakazakii was initially referred to as yellow-pigmented Enterobacter cloacae and reclassified in 1980. E. sakazakii infection cause life-threatening meningitis, septicemia, and necrotizing enterocolitis in infants. Powdered infant formula (PIF) and baby foods may be the important vehicle of E. sakazakii infection. It has been reported that E. sakazakii was isolated from PIF and sunsik ingredients produced in Korea. Some infants have been fed sunsik as a weaning diet. Therefore, it is necessary that this organism should be inactivated on preparing PIF and sunsik at homes and in hospitals. The cocktail of three Korean E. sakazakii strains (human, sunsik and soil isolates) were used to investigate the inactivation of this organism with hot water at 50, 60, 65, 70 and $80^{\circ}C$ and microwave heating for 60, 75, 90, 105 and 120 sec. Reconstituted PIF and sunsikwere inoculated with cocktailed vegetative cells of E. sakazakii at 6 log CFU/mL. Thermal inactivation of vegetative cells of E. sakazakii were achieved by reconstituted PIF and sunsik with hot water at $60^{\circ}C$ or greater and with microwave heating at 2,450 MHz for 75 sec or longer. Considering that biofilm formation of E. sakazakii was adapted to survive the dry environment that is PIF and sunsik and thermal resistance increased, it is suggested that inactivation of E. sakazakii was used by hot water at $70^{\circ}C$ or greater and microwave heating for 90 sec or longer. Reconstituted PIF and sunsik were inoculated with cocktailed vegetative cells of E. sakazakii at 2 to 3 log CFU/mL to investigate the growth curve of this organism and stored at 5, 10, 15, 20, 25, 30 and $35^{\circ}C$. Viable counts slightly changed at 5, $10^{\circ}C$ during 48 h but grew at $15^{\circ}C$ or greater. Considering that E. sakazakii is able to grow in infant formula milk at refrigerator temperature, reconstituted PIF and sunsik that are not immediately consumed should be discarded or stored at refrigeration temperatures within 24 h.

Experimental Study on Combined Failure Damage of Bi-directional Prestressed Concrete Panel under Impact-Fire Loading (충돌 후 화재에 대한 이방향 프리스트레스트 콘크리트 패널부재의 복합 파괴손상에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2014
  • Since the World Trade Center and Pentagon attacks in 2001, terror, military attack, or man-made disaster caused impact, explosion, and fire accident have frequently occured on civil infrastructures. However, structural behavior researches on major Prestressed Concrete (PSC) infrastructures such as bridges, tunnels, Prestressed Concrete Containment Vessel (PCCVs), and LNG tanks under extreme loading are significantly lacking. Especially, researches on possible secondary fire scenarios after terror, bombing, collision of vehicles and vessels on concrete structures have not been performed domestically where most of the past researches related to extreme loadings on structures focused on an independent isolated extreme loading scenario. Due to the outcry of public concerns and anxiety of potential terrorist attacks on major infrastructures and structures, a study is urgently needed at this time. Therefore, in this study, the bi-directional prestressed concrete $1400{\times}1000{\times}300mm$ panels applied with 430 kN prestressing force using unbonded prestressing thread bars were experimentally evaluated under impact, fire, and impact-fire combined loadings. Due to test site restrictions, impact tests were performed with 14 kN impactor with drop heights of 10m and 3.5 m to evaluate impact resistance capacity. Also, fire and impact-fire combined loading were tested using RABT fire loading curve. The measured residual strength capacities of PSC and RC specimens applied with impact, fire, impact-fire combined loadings were compared with the residual strength capacity of undamaged PSC and RC specimens for evaluation. The study results can be used as basic research data for related research areas such as protective design and numerical simulation under extreme loading scenarios.

Predicting Migration of a Heavy Metal in a Sandy Soil Using Time Domain Reflectometry (TDR을 이용한 사질토양에서의 중금속 이동 추정)

  • Dong-Ju Kim;Doo-Sung Baek;Min-Soo Park
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Recently, transport parameters of conservative solutes such as KCl in a porous medium have been successfully determined using time domain reflectometry (TDR) . This study was initiated to Investigate the applicability of TDR technique to monitoring the fate of a heavy metal ion in a sandy soil and the distribution of its concentration along travel distance with time. A column test was conducted in a laboratory that consists of monitoring both resident and flux concentrations of $ZnCl_2$in a sandy soil under a breakthrough condition. A tracer of $ZnCl_2$(10 g/L) was injected onto the top surface of the sample as pulse type as soon as a steady-state condition was achieved. Time-series measurements of resistance and electrical conductivity were performed at 10 cm and 20 cm of distances from the inlet boundary by horizontal-positioning of parallel TDR metallic rods and using an EC-meter for the effluent exiting the bottom boundary respectively. In addition. Zn ions of the effluent were analyzed by ICP-AES. Since the mode and position of concentration detected by TDR and effluent were different, comparison between ICP analysis and TDR-detected concentration was made by predicting flux concentration using CDE model accommodating a decay constant with the transport parameters obtained from the resident concentrations. The experimental results showed that the resident concentration resulted in earlier and higher peak than the flux concentration obtained by EC-meter, implying the homogeneity of the packed sandy soil. A close agreement was found between the predicted from the transport parameters obtained by TDR and the measured $ZnCl_2$concentration. This indicates that TDR technique can also be applied to monitoring heavy metal concentrations in the soil once that a decay constant is obtained for a given soil.

  • PDF

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Physicochemical Properties of Several Korean Yam Starches (한국산 마전분의 이화학적 특성)

  • Kim, Wha-Sun;Kim, Sang-Soon;Park, Yong-Kon;Seog, Ho-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.554-560
    • /
    • 1991
  • The physicochemical properties of Korean yam starches (D. aimadoimo, D. batatas and D. japonica) were investigated. The mean granular size of starches were 23.5 μm for D. aimadoimo, 23.9 μm for D. batatas and 18.2 μm for D. japonica. Amylose content, blue value and water binding capacity was $29{\sim}33%,\;0.42{\sim}0.51%\;and\;109.9{\sim}118.3%$, respectively. The optical transmittance of 0.3% (dry basis) yam starch suspensions were increased at $70{\sim}75^{\circ}C$ and D. japonica showed typical two-step transmittance curve. The swelling power and solubility patterns increased over $60^{\circ}C$, and D. aimadoimo was the highest values. Amylogram patterns of 5% (dry basis) yam starch suspensions, determined by Brabender amylograph, were similar to that of yam flours and the viscosity of D. aimadoimo had 630 BU, which was about 5 times higher than 130 BU for D. batatas and D. japonica. Observation under scanning electron microscope lefted marks of resistance to glucoamylase because these surfaces were similar to the natural granules. In rates of solubiliazation by dimethyl sulfoxide, D. aimadoimo showed the highest value. (3-Amylolysis limits of yam starches and their amylose were $71.8%{\sim}75.5%\;and\;90.2{\sim}92.1%$, respectively. Gel filtration patterns of debranched amylopectin by pullulanase were divided into 3 peaks. The weight ratios of peak III to peak II in yam starches were $2.15%{\sim}2.42%$.

  • PDF

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.