• Title/Summary/Keyword: resistance change

Search Result 2,416, Processing Time 0.031 seconds

Effect of Walking Exercise with Blood Flow Restriction on Body Composition, Growth Hormone, and Muscle Damage Markers in Obese Women (혈류를 제한한 걷기운동이 비만여성의 신체조성과 성장호르몬, 근손상지표에 미치는 영향)

  • Lee, Jang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.183-190
    • /
    • 2017
  • Blood flow restriction(BFR) exercise is defined as low and short lengthexercise with pneumatic pressure belts at the top of the limbs. This study was conducted to investigate the effects of walking exercise with BFR on body composition, growth hormone, and muscle damage markers in obese women. Eleven obese women(> BMI 25kg/m2&> body fat 30%) wore pneumatic pressure belts at both femurs and performed walking exercise twice per day, 3days/wk for 4 week (walking 2min; resting 1min). Body weight, BMI and body fat significantly decreased after exercise(p<0.05), while% body fat was slightly decreased after exercise, although this difference was not significant. Growth hormones increased slightly after exercise, although not significantly. Muscle damage markers (CK(p<0.05), LDH(p<0.05) and K+(p<0.01 increased significantly after exercise, but Mb was did not change significantly. These results suggest that 4-weeks ofblood flow restriction exercisecould be used to prevent and treat obesity and related chronic diseases, as well as metabolic syndrome. Moreover, the effects were similar to those observed in response to high intensity resistance programs, despite the short period for which BFR were conducted.

A Study on Synthesis Acrylic Polymer Resin and Mechanical Properties Containing Monoammonium Phosphate (Monoammonium phosphate를 포함한 아크릴 수지의 합성 및 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.500-508
    • /
    • 2014
  • For this research, synthesis acrylic resin by ethyl acrylate monomer(EAM) and prepared samples which set by difference amount of monoammonium phosphate solution in waterborne acrylic resin. Use these resins, analyzed mechanical properties and thermal stability by films and leather surface coated. The test of DSC experiment sample WAC-APS3 was $410^{\circ}C$ Tm values which means the highest content of monoammonium phosphate had highest thermal stability in acrylic resin. According to measure data for solvent resistance, all samples showed good property. As known in the results, increase of ammonium phosphate constant did not influence to big change of resin properties. In abrasion test WAC-APS3 was good abrasion properties(68.729 mg.loss). Test of tensile strength, as increase as monoammonium phosphate resin analyzed low properties $1.505kgf/mm^2$ to $1.275kgf/mm^2$. In elongation case, same as strength test result 425 % to 384 % by increase to monoammonium phosphate amount in acrylic resin.

Korean Red Ginseng-intake has Definite Clinical Usefulness and causes Nef Gene Variation including High Frequency of Deletion

  • Cho Young Keol;Lee Hee Kyung;Ahn Sun Hee;Lee Hee Jung;Nam Ki Yeul
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.185-211
    • /
    • 2002
  • We have found many beneficial effects of the long-tenn intake of Korean red ginseng (KRG) in human immunodeficiency virus (HIV) type-I infected patients, including the maintenance of CD4+ T cell count for 10 years with KRG only and the delayed development of resistance mutation to ZDV. In this study, to investigate whether KRG-intake could affect the clinical progression and nef gene variation, we determined 200nef sequences from 70 patients. Follow-up period was $8.8{\pm}2.9$ years and annual decrease in CD4+T cell was $41{\pm}57/ul.$ Nested polymerase chain reaction (PCR) and direct sequencing were perfonned with peripheral blood mononuclear cells (PBMC) obtained at times during the study period. First, there was a significant correlation between survival duration and duration of KRG-intake $(36.8{\pm}38$ months)(P=0.000). There were significant correlations between the last NefProg score and CD4+ T cell count (r= 0.208, P<0.05) and annual decrease in CD4+ T cell count (r =0.346, P<0.01) in 70 patients. In addition, there were significant correlations between KRG-intake and annual decrease (r= 0.323, P<0.01), and the CD4+ T cell count itself (r=0.229, p<0.05). Furthennore, there was also a mild significance between the NefProg score and the duration of KRG-intake in only SP and RP (n=30, r=-0.281, P=0.067). In addition, we detected various defects in 21 patients $(30.0\%),$ not including 5 premature stop codons. Ten $(12.5\%)$ patients showed repeated deletion of an amino acid. Four of 10 patients were gross deletions and they were treated with KRG for more than 20 months. The number of patients with repeated gross deletions was significantly higher in the order of slow progressors $(18\%)$, typical progressors($3\%$), and rapid progressors($0\%$) (P<0.05). We also observed that long-tenn intake of KRG might make the change from A or D to T at position 54 and decrease NefProg score. Taken together, our results show clear evidence that the long-term intake of KRG has effects on nef gene variation as well as definite clinical usefulness.

  • PDF

Giant Magnetoresistance of Antiferromagnetic Cr-Al based Multilayer Spin-Valve with Anti-Corrosion and Thermal Stability (내열 내식용 Cr-Al반강자성계 스핀밸브막의 거대자기저항 효과)

  • 김병수;이성훈;이찬규
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.362-368
    • /
    • 1998
  • The magnetic properties, thermal stability and anti-corrosion properties of $Cr_86Al_14$ spin valves multilayers were studied. It was found that the magnetic properties of $Cr_86Al_14$ spin valves depend on the thickness of antiferromagnetic, ferromagnetic and non-ferromagnetic layers. Exchange coupled field ($H_{ex}$) and magnetoresistance ratio (%) showed the largest value of 20 Oe, 2 % in $glass/Cr_{86}Al_{14}(600 $\AA$)/Ni_{81}Fe_{19}(50$\AA$)/Cu(40 $\AA$)/Ni_{81}Fe_{19}(40 $\AA$)$ spin valves. The $H_{ex}$ MR ratios (%) of CrAl and FeMn spin valves were decreased with increasing annealing temperatures and were lost at 150 $^{\circ}C$, 250 $^{\circ}C$ respectively. Based on these result, it was elucidated that CrAl is more thermally stable than FeMn. It was also shown that there was no change of $H_{ex}$ MR ratios in CrAl, while FeMn was changed and lost 15 days later in corrosion resistance test under 35 $^{\circ}C$, 90 % humidity condition. FeMn was found to be pitted and peeled off 15 days later by SEM micrographic analysis.

  • PDF

Effects of Customized Fertilizer Application on Growth and Yield of Rice (맞춤형비료 시용에 따른 벼 생육 및 비료 사용량 절감 효과)

  • Lee, Jong-Sik;Song, Yo-Sung;Lee, Ye-Jin;Yun, Hong-Bae;Jang, Byong-Chun;Kim, Rog-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1124-1129
    • /
    • 2011
  • The importance of environment-friendly agriculture is being magnified as a new growth engine industry in pursuit of low carbon, green growth policies. In order to provide technical supports for pushing ahead with the environment-friendly agriculture policies, we estimated the effects of customized fertilization on growth and yield of rice and fertilizer reduction compared to conventional fertilization and single-element fertilization. In rice plant growth and rice yield, no statistically significant difference between the three fertilization treatments was observed. In contrast, customized fertilization showed high disaster resistance reducing the damage caused by rice lodging during a typhoon. The average N application in farms showing high rice lodging amounted to $135kg\;N\;ha^{-1}$ while $135-138kg\;N\;ha^{-1}$ was known as the critical range of rice lodging in Korea. The fertilizer reduction rate of customized fertilization compared to conventional fertilization of investigated farms was on average 22.5%. We estimated the short-term effects of customized fertilization in the first year after application. In future, there is need for continuous examination of rice growth and soil environment change due to successive application of customized fertilizer.

Stability Evaluation on Particle Size Characteristics of Bed Materials at High-Velocity Flow (고유속 흐름에서 하상재료의 입도특성에 따른 안정성 평가연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.365-376
    • /
    • 2021
  • In general, domestic streams and rivers are composed of alluvial rivers consisting of sand and gravel beds. These rivers can cause erosion and riverbed changes due to sudden changes in flow rates, such as floods, torrential rains, and heavy rains. In particular, there are various types of erosion, such as contraction erosion caused by changes in river shape, or local erosion occurring around obstacles such as piers, abutments or embankments. In addition, river changes can occur in various forms, such as static or dynamic periods, due to limitations such as flow rate, velocity, and shear stress. This study focused on the erosions of embankments directly related to human casualties among various river structures, and evaluated limit velocities and critical shear stress in order to identify changes in strength of natural materials by identifying the characteristics of natural hoan materials and resistance to erosions. In particular, the limitations of materials according to the type of materials in the river, characteristics of particles, and size of particles were studied using Soil loss, which is a change in the volume of the revetment material, and it is intended to be used as basic data for river design and restoration.

Electrical Resistivity of ITZ According to the Type of Aggregate (골재 종류별 시멘트 경화체 계면의 전기저항 특성)

  • Kim, Ho-Jin;Bae, Je Hyun;Jung, Young-Hoon;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 2021
  • The three factors that determine the strength of concrete are the strength of cement paste, aggregate and ITZ(Interfacial Transition Zone) between aggregate and cement paste. Out of these, the strength of ITZ is the most vulnerable. ITZ is formed in 10~50㎛, the ratio of calcium hydroxide is high, and CSH appears low ratio. A high calcium hydroxide ratio causes a decrease in the bond strength of ITZ. ITZ is due to further weak area. The problem of ITZ appears as a more disadvantageous factor when it used lightweight aggregate. The previous study of ITZ properties have measured interfacial toughness, identified influencing factors ITZ, and it progressed SEM and XRD analysis on cement matrix without using coarse aggregates. also it was identified microstructure using EMPA-BSE equipment. However, in previous studies, it is difficult to understand the microstructure and mechanical properties. Therefore, in this study, a method of measuring electrical resistance using EIS(Electrochemical Impedance Spectroscopy) measuring equipment was adopted to identify the ITZ between natural aggregate and lightweight aggregate, and it was tested the change of ITZ by surface coating of lightweight aggregate with ground granulated blast furnace slag. As a result, the compressive strength of natural aggregate and lightweight aggregate appear high strength of natural aggregate with high density, surface coating lightweight aggregate appear strength higher than natural aggregate. The electrical resistivity of ITZ according to the aggregate appeared difference.

PIK3CA Mutations and Neoadjuvant Therapy Outcome in Patients with Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: A Sequential Analysis

  • Seo, Youjeong;Park, Yeon Hee;Ahn, Jin Seok;Im, Young-Hyuck;Nam, Seok Jin;Cho, Soo Youn;Cho, Eun Yoon
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • Purpose: PIK3CA mutation is considered to be a possible cause for resistance to neoadjuvant chemotherapy (NAC) in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. We investigated the association between PIK3CA mutations and the outcome of NAC in HER2-positive breast cancers. Methods: A total of 100 HER2-positive breast cancer patients who had undergone NAC and surgery between 2004 and 2016 were examined. Mutation status was sequentially assessed in pre-NAC, post-NAC, and recurrent specimens taken from these patients. Results: PIK3CA mutations were identified in the sequential specimens of 17 patients (17.0%). These 17 patients experienced shorter disease-free survival (DFS) than the rest of the patients (58.3 months vs. 119.3 months, p=0.020); however, there was no significant difference in pathologic complete response (pCR) and overall survival (OS) (pCR, 17.6% vs. 33.7%, p=0.191; OS, 84.5 months vs. 118.0 months, p=0.984). While there was no difference in pCR between the wild-type and mutant PIK3CA groups in pre-NAC specimens (25.0% vs. 31.8%, p=0.199), PIK3CA mutations correlated with lower pCR in postNAC specimens (0.0% vs. 24.3%, p<0.001). Multivariate analysis revealed significantly worse DFS in the mutant PIK3CA group than in the wild-type group (hazard ratio, 3.540; 95% confidence interval, 1.001-12.589; p=0.050). Moreover, the DFS curves of the change of PIK3CA mutation status in sequential specimens were significantly different (p=0.016). Conclusion: PIK3CA mutation in HER2-positive breast cancer was correlated with a lower pCR rate and shorter DFS. These results suggest that PIK3CA mutation is a prognostic marker for NAC in HER2-positive breast cancer, especially in post-NAC specimens.

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

In vitro wear behavior between enamel cusp and three aesthetic restorative materials: Zirconia, porcelain, and composite resin

  • Jang, Yong-Seok;Nguyen, Thuy-Duong Thi;Ko, Young-Han;Lee, Dae-Woo;Baik, Byeong Ju;Lee, Min-Ho;Bae, Tae-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • PURPOSE. The aim of this study was to identify the effects of three aesthetic restorative materials on the wear between tooth and restoration by a pin-on-disk manner. MATERIALS AND METHODS. Six aesthetic restorative materials were used to prepare disk specimens for wear test, which were Lava Zirconia as zirconia group, Vintage MP and Cerabien ZR as veneering porcelain group, Gradia Direct microhybrid composite containing prepolymerized fillers, Filtek Z250 microhybrid composite containing zirconia glass and colloidal silica particles, and Filtek Z350 nanocomposite as composite resin group. Vertical loss of the worn cusp, change of the surface roughness of the restoration materials, and the surface topography were investigated after wear test under 9.8-N contact load. RESULTS. The porcelain groups (Vintage MP and Cerabien ZR) caused the largest vertical loss of teeth when compared with those of the composite resin and zirconia groups, and Filtek Z250 microhybrid composite results in the second-largest vertical loss of teeth. The surface of Filtek Z350 nanocomposite was deeply worn out, but visible wear on the surface of the zirconia and Gradia Direct microhybrid composite was not observed. When the zirconia surface was roughened by sand-blasting, vertical loss of teeth considerably increased when compared with that in the case of fine polished zirconia. CONCLUSION. It was identified that microhybrid composite resin containing a prepolymerized filler and zirconia with reduced surface roughness by polishing were the most desirable restorative materials among the tested materials to prevent the two-body wear between aesthetic restorative material and tooth.