• Title/Summary/Keyword: resin composites

Search Result 928, Processing Time 0.025 seconds

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

The Study on the Rheological Properties of Polymer Matrix for MIF (Molded-In Foaming) Process (MIF (Molded-In Foaming) 공정에 적합한 고분자 기재의 유변학적 특성 연구)

  • Kim, Mingeun;Song, Hyeong Yong;Kim, Dong Gun;Kim, Hyo Jun;Park, Geon Uk;Yu, Jae Keun;Hyun, Kyu
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2014
  • In order to select polymer matrix for MIF (Molded-In Foaming) process, in this study, we investigated rheological properties of commercial polymers, SBC (Styrene-Butadiene Copolymers, K-resin KK38) and SBS (Styrene- Butadiene-Styrene, KTR 101 and KTR 301). In time sweep test, the rheological properties ($G^{\prime}$, $G^{{\prime}{\prime}}$, ${\eta}^*$) of SBS at 155 and $170^{\circ}C$ display almost constant value as a function of time from 0 s to 1800 s. On contrast, the rheological properties of SBS at 185 and $200^{\circ}C$ exponentially increase as a function of time. It could be due to gelation of SBS at high temperature conditions. These increment of rheological properties are not observed in SBC. From LAOS (large amplitude oscillatory shear) test, the nonlinear rheological properties of SBS at 155 and $200^{\circ}C$ after 1800 s are compared. The nonlinear rheological properties at $155^{\circ}C$ show simple strain thinning behavior such as linear homopolymer, however, the nonlinear rheological properties at $200^{\circ}C$ show 2 times strain thinning behavior (Payne effect). It well match with the gelation of SBS at $200^{\circ}C$. From rheological studies, it is confirmed that the proper polymer matrix for MIF process (low rheological properties at initial time and high rheological properties after process) is SBS KTR 301.

COLOR DIFFERENCE OF THE DENTAL COMPOSITES MEASURED BY DIFFERENT COLOR MEASURING INSTRUMENTS (복합레진 색상의 측정 기기에 따른 차이)

  • Park, Su-Jung;Noh, Eun-Young;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.199-207
    • /
    • 2009
  • The objective of this study was to evaluate the effect of color measuring instrument by measuring the color of dental composite resins. Nine shade light cured composite resin disks were prepared (diameter : 15 mm, thickness : 4 mm). CIE $L^*a^*b^*$ color scale of each disk was measured with 3 different types of spectrophotometer [MiniScan XE plus (Model 4000S, Hunter Lab, USA), CM-3500d (Minolta, Japan) and Specbos 2100 Miniature VIS Reflection spectrometer (Serial No: 319416, JETI Technishe VIS Instrumentic GmbH. Germany)]. Miniscan XE Plus and CM-3500d using identical measuring geometry with different size of viewing aperture. But Specbos 2100 using different measuring geometry. Within the limitation of this study, there were color difference (${\Delta}E^*$) from 2.4 to 7.8 between Miniscan XE Plus and CM-3500d, but $L^*$, $a^*$, $b^*$ values showed the high correlation. However, there were great color difference (${\Delta}E^*$) in the extent of about 20 between instruments with the different measuring geometry. Therefore, color scale measured by color measuring instrument should be used as a relative value rather than an absolute value in the field of dentistry.

Curing and Rheological Behavior of Epoxy Resin Compositions for Underfill (언더필용 에폭시 수지 조성물의 경화 및 유변학적 거동)

  • Kim, Yoon-Jin;Park, Min;Kim, Jun-Kyung;Kim, Jin-Mo;Yoon, Ho-Gyu
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.213-226
    • /
    • 2003
  • The cure and rheological behavior of diglycidyl ether of bisphenol F/nadic methyl anhydride resin system with the kinds of imidazole were studied using a differential scanning calorimeter (DSC) and a rotational rheometer. The isothermal traces were employed to analyze cure reaction. The DGEBF/ anhydride conversion profiles showed autocatalyzed reaction characterized by maximum conversion rate at $20{\sim}40 %$ of the reaction. The rate constants ($k_1,\;k_2$) showed temperature dependance, but reaction order did not. The reaction order (m+n) was calculated to be close to 3. There are two reaction mechanisms with the kinds oi catalyst. The gel time was determined by using G'-G" crossover method, and the activation energy was obtained from this results. From measurement of rheological properties it was found that the logarithmic 1:elation time of fused silica filled DBEBF epoxy compounds linearly increased with the content of filler and decreased with temperature. The highly filled epoxy compounds showed typical pseudoplastic behavior, and the viscosity of those decreased with increasing maximum packing ratio.

A Study on Crystallization of Thermoplastic Aromatic Polymer (열가소성 방향족 폴리머의 결정화 특성에 대한 연구)

  • Park, Dong-Cheol;Park, Chang-Wook;Shin, Do-Hoon;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • Thermoplastic composite has been limitedly used in high performance aerospace industry due to relatively low mechanical properties even though it has various advantages. But, thermoplastic aromatic polymer composite has recently been researched and utilized much. In this study, PEEK and PPS neat resin film as representative thermoplastic aromatic polymer were processed through continuous heating, cooling and reheating cycle. Property change such as glass transition temperature and melting temperature were identified and crystallinity variation by different cooling rate were evaluated. In the first (heating) run, polymer specimens were kept for 5 minutes at higher temperature than melting point to remove previous thermal history, and crystallization reaction was controlled by adjusting cooling rate to 2, 5, 10, 20 and $40^{\circ}C/minute$ in the second (cooling) run. In the third (heating) run, specimen crystallinity were verified by measuring the melting enthalpy. The initial specimens containing high portion of amorphous structure exhibited cold crystallization and clear glass transition in the first run whereas they did not show in the third run due to the increase of crystalline structure portion. As cooling rate decreases through the second cooling run, the crystallinity of the specimen increased. PEEK polymer had 21.9~39.3% crystallinity depending on cooling rate change whereas PPS polymer showed 29.1~31.2%.

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing (디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석)

  • Jeong, Yo-Seok;Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

Durability of High Performance Polymer Concrete Composites (Focusing on Chemical Resistance and Hot Water Resistance) (고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로))

  • Hwang, Eui-Hwan;Kim, Yong-Yeon;Song, Min-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.360-368
    • /
    • 2017
  • In order to investigate the durability of high performance polymer concrete composites, polymer concrete specimens were prepared using the ortho-type unsaturated polyester resin (UPR) and iso-type UPR as a polymer binder and the calcium carbonate and silica fine powder as a filler. The durability of polymer concrete specimens was measured by hot water resistance, chemical resistance, pore analysis and SEM observation. The compressive strength of the specimen using the iso-type UPR was higher than that of using the ortho-type UPR, and the compressive strength of the specimen using the silica fine powder was higher than that of using the calcium carbonate filler. From hot water resistance results, it was found that the specimen using the iso-type UPR was superior to that of using the ortho-type UPR and the specimen using the calcium carbonate filler was superior to that of using the silica fine powder. The compressive strength reduction rate was measured after the chemical resistance test and the sodium hydroxide solution showed the highest reduction rate, followed by sulfuric acid, hydrochloric acid and calcium chloride solutions. When using the alkaline solution of sodium hydroxide, the weight reduction rate of the specimen using calcium carbonate was lower than that of using silica fine powder, while for the acidic solutions of sulfuric acid and hydrochloric acid, the weight reduction rate of the specimen using the silica fine powder was lower than that of using calcium carbonate.

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.