• Title/Summary/Keyword: resin acids

Search Result 89, Processing Time 0.029 seconds

Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner (카본블랙의 표면개질이 중합토너의 특성에 미치는 영향)

  • Lee, Eun Ho;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.628-633
    • /
    • 2013
  • Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surfacemodified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

Studies on the N-compounds during Chung-Kook-Jang Meju Fermentation (1) -Changes of Soybean Protein during Chung-Kook-Jang Meju Fermentation- (청국장(淸國醬) 메주 발효과정중(醱酵過程中)의 질소화합물(窒素化合物)의 소장(消長)에 관(關)한 연구(硏究)(I)-대두단백질(大豆蛋白質)의 소장(消長)에 관(關)하여-)

  • Park, Ke-In
    • Applied Biological Chemistry
    • /
    • v.15 no.2
    • /
    • pp.93-109
    • /
    • 1972
  • Three lots of Chung-Kook-Jang were prepared by the use of 2 strains of Bacillus subtilis and Bacillus natto. For four samples taken from each lot in 12 hrs interval changes of nitrogenous compounds, insoluble protein, water soluble protein, peptides, free amino acids, amino and ammonia nitrogens during Chung-Kook-Jang fermentation, were studied together with the changes of moisture, pH, proteolytic enzyme activity. In addition the average peptide length of the peptides of a Bacillus subtilis lot was determined by the method of molecular sieving using ion exchange resin. The results were as follows: 1. The contents of moisture and total-nitrogen changed little in all samples throughout the fermentation as it would be expected. 2. In all three experimental lots the pH became higher gradually from the initial value of 6.65 to the final $7.5{\sim}7.85$ during the fermentation. Proteolytic enzyme activities, in accordance with this pH change, steadily increased up to $48{\sim}60$ hrs. of fermentation and then slightly decreased, probably affected by the high pH. The most strong proteolytic activity was observed in the experimental Chung-Kook-Jang fermentation lot using the Bacillus subtilis K-27 isolated by the author. 3. The contents of insoluble protein nitrogen in soybeans increased markedly (5%) by the cooking, after steeping 12 hrs in water. During the Chung-Kook-Jang fermentation, however, it decreased from 1/2 to 1/10 of that of the cooked soybeans. 4. The contents of water soluble protein nitrogen (5%) whereas, greatly decreased to the value of 1.0% by the cooking; but little changed further during the fermentation, 5. The total contents (0.25%) of peptides, amino, and ammonia-nitrogens, PAA-N., increased almost double by the cooking and steadily became higher as the fermentation proceeded, reaching finally up to$4{\sim}7%$ in 72 hrs fermentation. 6. The amounts of free amino acids of soybean generally decreased during the processing of cooking, even some of them like glutamic acid were destroyed completely, However in the subsequent Chung-Kook-Jang fermentation for 72 hrs., they showed from several to a few hundreds folds increases depending upon the kinds of amino acids. Valine which was contained in HCl-hydrolyzed steeped or cooked soybeans in amounts $220{\sim}267mg%$ was not detected at all as the free amino acid in all fermented samples. 7. Average peptide length (APL) of all fractions, eluted and fractionated by using the Dowex-50 ion exchange resin column, and fraction collector showed the highest value for the cooked soybean and then decreased as the fermentation proceeded. The APL value of effluent showed the highest in 12 hrs fermented sample, The value decreased thereafter by fermentation.

  • PDF

Investigating The Potential of Human Hair Produced from The Beauty Parlor and Barbershop as a Raw Material of Wood Adhesives (미·이용업 폐기물 인모의 목재접착제 원료화 가능성 탐색)

  • Yang, In;Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.599-612
    • /
    • 2017
  • Human hair (HH) is produced as a waste from beauty parlor and barbershop. HH-based adhesives were formulated with NaOH-hydrolyzed HH, $H_2SO_4$-hydrolyzed chicken blood (CB) and PF as a crosslinking agent. Physicochemical properties and retention rate against hot water of the adhesives were measured to investigate the potential of HH as a raw material of wood adhesives. HH was composed of keratin-type protein of 80% and over. Ash of less than 0.1% was contained in HH. Among the amino acids included in HH, glutamic acid showed the highest content, followed by cysteine, serine, arginine and threonine. Solid content of the adhesives ranged from 33.2% to 41.8% depending on hydrolysis conditions of HH and PF type. Viscosity at $25^{\circ}C$ ranged from 300 to $600mPa{\cdot}s$ resulting in a sprayable adhesive. Retention rate against hot water measured to evaluate the water resistance of adhesives was the highest in the cured resin formulated with 5% NaOH-hydrolyzed HH and 5% $H_2SO_4$-hydrolyzed CB. Meanwhile, the molar ratio of formaldehyde to phenol in PF did not have a significant impact on the retention rate of HH-based adhesives. When the retention rates of HH-based adhesives were compared to those of conventional wood adhesive resins used for the production of wood-based panels extensively, HH-based adhesives formulated with 30 wt% PF showed lower retention rate than commercial urea-formaldehyde resin. However, when PF content was increased to 35 wt%, the retention rate greatly increased and approached to that of commercial melamine-urea-formaldehyde resin. Except for the results mentioned above, the analysis of economic feasibility suggests that HH-based adhesives can be used for the production of wood-based panels if HH is hydrolyzed in proper conditions and then the HH-based adhesives are formulated by the HH hydrolyzates with 35 wt% PF.

Esterification of High Concentration Free Fatty Acid in Rice Bran Oil (미강유 중 고농도 자유지방산의 에스테르화)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.211-224
    • /
    • 2008
  • Characteristics of the esterification reaction between free fatty acid in rice bran oil and methanol was investigated in the presence of catalysts, such as PTS(p-toluene sulfonic acid), Amberlyst 15 dry and SCX(silica gel based strong cation exchange resin). While reaction temperature was kept constant at $65^{\circ}C$, initial feed content of free fatty acid was varied from 100% to 1% by addition of pure free fatty acid which was previously made from rice bran oil. Also, the effect of mole ratio of methanol to fatty acid on the final conversion was examined. When esterification of pure free fatty acid was catalyzed by several acids, final conversions were increased in order of Amberlyst 15 dry, SCX and PTS. Using PTS catalyst, initially the reaction proceeded in homogeneous 2nd oder reaction mechanism. However, phase of reaction mixture changed from homogeneous to heterogeneous along the reaction time and then reaction rate was retarded by mass transfer resistance of methanol. Final conversion of free fatty acid in reaction mixture was depended on initial feed content of free fatty acid, and had maximum value at 30% of initial feed free fatty acid content for all kinds of catalysts used. And the final conversion was increased with mole ratio of methanol by the improvement of reaction rate. When initial feed free fatty acid content below 10% and the reaction was catalyzed by PTS, concentration of free fatty acid in reaction mixture was increased in the middle of reaction time by hydrolysis of triglyceride in reaction mixture. Also, if silica gel was added into the reaction mixture which had initial feed free fatty acid content below 50%, final conversion was increased by the adsorption of moisture produced. The SCX catalyst made the esterification reaction of free fatty acid to progress like in case of PTS catalyst. However, when initial feed free fatty acid content below 10%, concentration of free fatty acid in. reaction mixture was decreased monotonically and not increased in the middle of reaction time on the contrary to the case of PTS. Thus, SCX catalyst accomplished more high value of final conversion than PTS catalyst for the initial feed fatty acid content range from 50% to 5% In case of initial feed free fatty acid content of 1% and mole ratio of methanol was 2, concentration of free fatty acid in reaction mixture increased over the initial feed free fatty acid content for all kind of catalysts used. Although SCX catalyst was added into reaction mixture which had 1% of initial feed fatty acid content, final conversion was hardly raised by mole ratio of methanol.

Isolation of Alliin in Garlic and Its Quantitative Determination by High Performance Liquid Chromatography and Studies on the Antimicrobial Efforts of Alliin and Ethanol Extracts from Korean Garlic(Alliium sativum L.) (마늘 중 고속 액체 크로마토그래피에 의한 알린의 분리 및 정량과 Alliin과 에탄올 추출물의 항균효과에 관한 연구)

  • 위성언
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.296-302
    • /
    • 2003
  • First. the purification and analysis of alliin in garlic from different origins by alliin-HPLC determination method were studied. Allinase in garlic was inactivated by heating in boiling water followed by extraction of alliin in garlic with 80% methanol. To remove free amino acids and alliin homologs in garlic, garlic extract was separated by cation exchange column which was packed with amberlite CG-120 resin using 40L d-water as eluent. Alliin in garlic extract was crystallized in a mixture of acetone (50$^{\circ}C$):H$_2$O:acetic acid=70:29:1 and then recrystallized in a mixture of acetone (50$^{\circ}C$):H$_2$O:acetic acid=75:24:1. Obtained alliin was identified by melting point. TLC, microscope observation and mass spectrometry. High performance liquid chromatography (HPLC) following pre-column derivatization of cystein derivatives with o-phthaldialdehyde/2-mercaptoethanol has succeessfully been applied to the analysis of various garlics. Each alliic of standard solution and garlic extract was derivatized to isoindole derivative by o-phthaldialdehyde /2-mercaptoethanol and then analyzed by HPLC. Six point calibration was done by using alliin peak area. Lineality was observed at 0 ∼ 1.0mg/ml of alliin concentration. Weighted regression line function was Y=6254X - 256077. By this function, alliin contents in various garlics were 0.34 ∼ 0.73% fresh weight. Second study was designed to evaluate the effects of garlic extracts of various concentrations on the growth of various pathogenes (Eubacterium limonsum, Bacteroides fragilis, Salmonella typhimurium, Salmonella typhi, Shigella sonnei, Kiebsiella pneumoniae, Enterobacter cloacae, Pserdomonas aeruginosa, Escherichia coli). For antimicrobial effects against microorganism, totally minimal inhibition concentrations (MIC) of alliin were from 5,000 to 20,000ppm. MIC of ethanol extract were 1,250 to 10,000ppm.

Study on the Elution Behaviors of Uranium and Vanadium in the Various Acids by Anion Exchange Chromatography (음이온 교환크로마토그래피법에 의한 여러가지 산에서 우라늄과 바나듐의 용리현상에 관한연구)

  • Ki-Won Cha;Jong-Hun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.309-314
    • /
    • 1984
  • The species and equilibria of uranium and vanadium have been investigated in the various concentration of perchloric, hydrochloric and sulfuric acid by anion exchange chromatography. In the concentration range of $0.01\;{\sim}\;0.5M$ hydrochloric and $0.01\;{\sim}\;0.5M$ perchloric acid, uranium seems to be $UO_2^{2+}$species and in higher concentration than 0.5M hydrochloric acid $UO_2^{2+}$seems to form the chloride complex ion as $UO_2Cl^+$, $UO_2Cl_2$, $UO_2Cl_3^-$ and $UO_2Cl_4^{2-}$ according to the increase of the hydrochloric acid concentration. In the dilute(0.01N) sulfuric acid the adsorbability of uranium on anion exchange resin is strong and then decreases with increasing the sulfuric acid concentration. From this result we conclude that $UO_26{2+}$ formed the complex ion as $UO_2(SO_4)_2^{2-}$. In the perchloric acid of $0.01\;{\sim}\;0.5N$ concentration the existing equilibrium of vanadium and its constant calculated at $20^{\circ}C$ is $1.9{\times}108$ for $H_2V_{10}O_{28}^{4-}$ + $14H^+$ = $10VO_2^+ + 8H_2O$. The elution behaviors of vanadium in the hydrochloric and sulfuric acid are smiliar to those in perchloric acid.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

New Methods for Separation of Crude Ginseng Saponins (인삼 조사포닌의 새로운 분리 방법)

  • Shin, Ji-Young;Choi, Eon-Ho;Wee, Jae-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-172
    • /
    • 2001
  • In order to increase ginsenoside content, to reduce chemical change, to shorten extracting procedure, new methods of extraction and fractionation of crude ginseng saponin were established and compared for their chemical composition. Those are hot MeOH extraction/n-BuOH fractionation (BuOH method) and hot MeOH extraction/Diaion HP-20 adsorption/MeOH elution (HP-20 method), which are already known methods, and additional three new methods: hot MeOH extraction/cation AG 50W $adsorption/H_2O$ elution/n-BuOH extraction (AG 50W method), cool MeOH extraction/Diaion HP-20 adsorption/MeOH elution (cool extraction method) and direct extraction with EtOAc/n-BuOH (direct extraction method). AG 50W method provided a crude saponin showing the highest content of ginsenosides of 61.5% and the lowest contents of protein and free amino acids of 0.93% and 0.19%, respectively. The protein content was the highest as 14.18% in the crude saponin by HP-20 method, while free sugar content was the highest as 13.5% by BuOH method, indicating that these are factors that lower the rate of ginsenoside in crude saponins by those methods. On the other hand, it was revealed that AG 50W method produced large amount of prosapogenins during the pass through the cation exchange resin (AG 50W) column being strongly acidic. Crude saponin from direct extraction method showed relatively higher composition of ginsenoside $Rg_1$ and Re. The results suggest that contents and composition of ginsenosides and other chemical components in crude ginseng saponin greatly depend on the condition of the extraction and fractionation.

  • PDF