• Title/Summary/Keyword: resin acid

Search Result 774, Processing Time 0.021 seconds

Ligand Exchange Studies with an Iminodiacetic Acid Ion Exchange Resin (Iminodiacetic Acid 이온 교환수지를 사용한 Ligand Exchange 에 대한 연구)

  • CHONG MIN BAK
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.56-59
    • /
    • 1967
  • Mixtures of amines can be separated by elution chromatography on a chelating resin, Dowex A-1 loaded with nickel ions based on ligand exchange. Aqueous ammonia is used as the eluent. The method has proved particulary effective for separating aromatic amines.

  • PDF

A STUDY ON MICROLEAKAGE OF COMPOSITE RESIN AFTER SURFACE TREATMENT (표면 처리방법에 따른 복합레진의 미세누출에 관한 실험적 연구)

  • Lee, Chang-Woo;Kim, Jung-Wook;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.103-115
    • /
    • 1998
  • Adhesion of composite resin to tooth structure has been of tremendous signgicance in clinical dentistry. Due to the lack of adhesion between composite restorative resins and enamel and dentin, microleakage occurs at the tooth/restoration interface. This may lead to discoloration, secondary caries, marginal breakdown, postoperative sensitivity, and even pulpal pathology. According to extensive use of composite resin, every effort on improving bonding strength and reducing microleakage between a tooth and composite resin has been continued. This study was conducted to determine the difference in microleakage in enamel and dentin treated with air-abrasion, acid etching and combination when restored with composite resin. Class V cavities were prepared on 30 premolars. The specimens were divided into following groups. group 1:air-abrasion+Scotchbond Multi-purpose group 4 :air-abrasion+All-Bond 2 group 2:acid etching+Scotchbond Multi-purpose group 5 :acid etching+All-Bond 2 group 3:combination+Scotchbond Multi-purpose group 6 :combination+All-Bond 2 #combination:air-abrasion + acid etching The specimens were filled with Z-100 after application of Scotchbond Multi-purpose and All-Bond 2. Thermocycling was conducted by alternately dipping the specimens in $5^{\circ}C$ and $55^{\circ}C$ water for 30 seconds 500 times. 1% methylene blue was applied and the specimens were left for 24 hours at $37^{\circ}C$. After washing out the dye, the tooth was sectioned buccolingually along the axis. The sectioned surface was observed with stereoscope for dye penetration. The author has measured the microleakage in teeth prepared with air-abrasion, acid ethching and combination to study the difference in microleakage following different methods of tooth surface treatment and has come to following results. 1. In comparing microleakage between groups, group 1 and 4 showed statistically significant difference from group 2, 3, 5 and 6(p<0.05). There was no significant difference among group 2, 3, 5, 6(p>0.05) nor between group 1 and 4(p>0.05). 2. In comparing microleakage among tooth surface treatment methods, Air-abrasion group showed significantly more microleakage than acid etching group and combination(airabrasion + acid etching) group(p<0.05). Combination(acid etching+air-abrasion)group tended to show lesser microleakage than acid etching group, but this was not statistically significant(p>0.05). 3. In comparing microleakage between bonding agents, there was no statistically significant difference between Scotch bond Multi-purpose and All-Bond 2(p>0.05).

  • PDF

EFFECT OF COLLAGEN DISSOLUTION IN ACID CONDITIONED DENTIN ON RESIN-DENTIN HYBRID LAYER (산표면처리 후 노출된 상아질 교원섬유의 용해가 하이브리드층 형성에 미치는 영향)

  • Jeon, Seong-Min;Son, Ho-Hyun;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.227-241
    • /
    • 1996
  • The effect of collagen dissolution in acid conditioned dentin was morphologically examined by both scanning and transmission electron microscopy. 18 freshly extracted human molars and dentin bonding systems of All Bond 2, Scotchbond Multipurpose, Superbond D-Liner were used in this study. For SEM preparation, each 3 of ~ exposed dentin surfaces were acid conditioned by using various acids within the above three bonding systems respectively. After acid conditioning of the other 3 exposed dentin surfaces as above, they were treated with 1.7% NaOCl for 2 minutes. The remaining 3 dentin surfaces were acid conditioned and treated with 3.3 % NaOCl for 2 minutes. All of the specimens were then fixed in 4 % glutaraldehyde for 12 h at $4^{\circ}C$ and dehydrated in ethanols grades from 50 % to 100 %, then surface changes of the specimens were observed by using SEM. For TEM preparation, exposed dentin surfaces were acid conditioned with the same acid as SEM specimens and treated with 1.7%, 3.3 % NaOCl respectively, then applied with corresponding bonding agents. After the procedures were finished, composite resin were applied on the dentin surfaces and light cured. Small, rectangular sticks with end dimensions of approximately 1 by 1 mm were sectioned and further sample preparative techniques for transmission electron microscopy were performed in accordance with the procedures used for ultrastructural TEM observations of calcified tissues. The results were as follows : 1. In the 1.7 % NaOCl retreated specimens after acid conditioning, the porous dentin surface of intertubular dentin and wide opening of dentinal tubules were appeared. And there were fine irregularities on the intertubular dentin, indicating a clear difference as compared with the acid conditioned specimens. 2. In the 3.3% NaOCl retreated specimens after acid conditioning, the intertubular dentin was further eroded causing a more porous and wider opening of dentinal tubules. Moreover, sharp irregularities on the intertubular dentin were more evident than those of acid conditioned and 1.7% NaOCl retreated specimens. 3. In all of the acid conditioned specimens, the resin-dentin hybrid layer of approximately 3.5mm thickness was formed and the collapsed collagen layer was observed on the uppermost part of hybrid layer in the specimens applied with All Bond 2. The collgen fibrils of intertubular dentin in specimens applied with Scotchbond Multipurpose were running perpendicular to the interface, and electron dense black layer demarcated from the deep unaltered dentin was more evident in the specimen applied with Superbond D-Liner than any other specimens. 4. In the 1.7 % NaOCl retreated specimens after acid conditioning, the resin-dentin hybrid layer of approximately 2.5-3.0mm thickness was formed and the collapsed collagen layer and longitudinally running collagen fibrils as shown in the acid conditioned specimens were observed in the specimens applied with All Bond 2 and Superbond D-Liner. 5. In all of the 3.3% NaOCl retreated specimens after acid conditioning, the evidence of resin-dentin hybrid layer was not identified ; nevertheless, the longitudinally running collagen fibrils remained slightly in the specimens applied with All Bond 2.

  • PDF

STUDY OF THE TENSILE BOND STRENGTH OF COMPOSITES RESINS APPLIED TO ACID-ECHED ENAMEL (산처리(酸處理)된 Enamel표면(表面)에 대(對)한 Composite resin의 인장접착강도(引張接着强度)에 관(關)한 연구(硏究))

  • Lee, Young-Kun;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 1987
  • The purpose of this study was to evaluate the tensile bond strength between composite resin and the human enamel. Three composite resin systems, two chemical (Clearfil Posterior, and Clearfil Posterior-3) and one light cure (Photo Clearfil-A), used with and without an intermediate resin (clearfil bonding agent), were evaluated under different amounts of load (10g, 200g and 200g for a moment) for in vitro tensile bond strength to acid-eched human enamel. Clinically intact buccal or lingual surfaces of 144 freshly extracted human permanent molars, embedded in acrylic were flattened with No #600 carborundum discs. Samples were randomly assigned to the different materials and treatments using a table of random numbers. Eight samples were thus prepared for each group(Table 2) these surfaces were etched with an acid etchant (Kurarey Co. Japan) in a mode of etching for 30 seconds, washing for 15 seconds, and drying for 30-seconds. During the polymerization of composite resin on the acid-etched enamel surfaces with and without bonding agent 10-gram, 200 gram and temporary 200 gram of load were applied. The specimens were stored in 50% relation humidity at $37^{\circ}C$ for 24 hours before testing. An universal Testing machine (Intesco model No. 2010, Tokyo, Japan) was used to apply tensile loads in the vertical directed (fig 5), and the force required for separation was recorded with a cross head speed of 0.25 mm/min and 20 kg in full scale. The results were as follow: 1. The tensile bond strength was much greater in applying a bonding agent than in not doing that. 2. The tensile bond strength of chemical cure composite resin was higher than that of light cure composite resin with applying on bonding agent on the acid-etched enamel. 3. In case of not applying a bonding agents on the acid-etching enamel, the highest tensile bond strength under 200 gram of load was measured in light cure composite resin. 4. The tensile bond strength under 200-gram of load has no relation with applying the bonding agent. 5. Under the load of 10-gram, There was significant difference in tensile bond strength as applying the bonding agent.

  • PDF

Preparation of Cation-exchange Resin from Lignin

  • Kamelt S.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.78-84
    • /
    • 2004
  • Lignin precipitated from black liquor of soda pulping of bagasse was used to prepare cation-exchange resin. The effect of sulfuric acid treatment, concentration of phenol and formaldehyde on the properties of the prepared cation-exchange resin was investigated. It was found that sulfonated resinified phenolated lignin gave a resin with an ion-exchange capacity higher than that of resin, which resulted from sulfonation of resinified lignin at zero phenol concentration. Infrared spectroscopy of the prepared ion-exchange resin shows anew bands at 1060, 1160, 1280 and $1330\;cm^{-1}$ which indicated to the presence of $SO_{3}$.

Trimerization of Isobutene over Solid Acid Catalysts: Comparison between Cation-exchange Resin and Zeolite Catalysts

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.339-341
    • /
    • 2008
  • Catalytic trimerization of isobutene to produce triisobutenes has been performed over cation-exchange resin and zeolite catalysts. Resin catalysts have the advantage of long lifetime and high trimers selectivity even though the regeneration of an aged catalyst is not satisfactory. On the contrary, zeolite catalysts can be regenerated facilely by simple calcination in air even though the lifetime is short and trimers selectivity is low probably due to small pore size and strong acidity, respectively. It is, therefore highly desirable to develop an inorganic acid catalyst with macro- or meso-pores to show catalytic performances similar or superior to those of macroporous resin catalysts.

A Study on the Desorption Behaviors of Some Heavy Metals on Duolite GT-73 Chelating Resin

  • Kim, Sook-Young;Lee, Jae-Suk;Kim, Young-Man;Choi, Beom-Suk
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.530-534
    • /
    • 2001
  • Effect of stripping solutions on the Duolite GT-73 chelating resin for ten elements, Ag(I), Al(III), Ca(II), Cd(II), Cu(II), Fe(II), Hg(II), Mn(II), Pb(II), and Zn(II), was investigated. Relation between affinities of the metal ions and solubility products of metal sulfides was studied. The smaller the solubility product of metal sulfideis, the larger the affinitie with the ionsis. The ions which have the solubility products larger than $10^{-23}$ could be effectively desorbed with nitric acid. Complexation with chloride ion enhanced the desorption efficiencies of the ions having moderately strong affinity with the resin. The ions which have very strong affinity by the chelating resin can be desorbed by complextion with thiourea and hydrochloric acid.

  • PDF

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid;Khanchi, Ali Reza;Nejatlabbaf, Mojtaba;Almasian, Mohammad Reza;Saberyan, Kamal;Taghiof, Mohammad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.301-315
    • /
    • 2017
  • An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.

A STUDY FOR THE BONDING STRENGTH OF COMPOSITE RESIN CORE TO GLASS FIBER POST (Glass Fiber Post와 Composite Resin Core의 전단결합강도)

  • Kim Tae-Hyoung;Shim June-Sung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.415-425
    • /
    • 2005
  • Statement of problem : Fracture of composite resin core will be occulted by progress of crack. Bonding interface of different materials has large possibility of starting point of crack line. Therefore, the bond strength of glass fiber post to composite resin core is important for prevention of fracture. Purpose: This in vitro study tried to find out how to get the higher strength of glass fiber post to composite resin core through surveying the maximum load that fractures the post and cote complex. Materials and methods: 40 specimens made with glass fiber Posts(Style $post^{(R)}$, Metalor, Swiss) and composite resin core ($Z-100^{(R)}$, 3M, USA) were prepared and loaded to failure with push-out type shear-bond strength test in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with four different surface treatments. With the data. ANOVA test was used to validate the significance between the test groups, and Bonferroni method was used to check if there is any significant statistical difference between each test group. Evely analysis was approved with 95% reliance. Results: On measuring the maximum fracture load of specimens, both the treatments of sandblasted and acid-etched one statistically showed the strength increase rather than the control group (p<0.005). The scanning electric microscope revealed that sand blasting made more micro-retention form not only on the resin matrix but on the glass fiber, and acid-etching contributed to increase in surface retention form, eliminated the inorganic particles in resin matrix. Specimen fracture modes investigation represented that sand blasted groups showed lower bonding failure than no-sand blasted groups. Conclusion: Referring to the values of maximum fracture load of specimens, the bonding strength was increased by sand blasting and acid-etching.

Effects of Various Acid Etching Methods on the Shear Bond Strength between Iithium Disilicate Ceramic and Composite Resin (다양한 산처리 방법이 lithium Disilicate 도재와 복합레진간의 전단결합강도에 미치는 영향)

  • Kang, Dae-Hyun;Bok, Won-Mi;Song, Jin-Won;Song, Kwang-Yeob;Ahn, Seung-Ggeun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.149-159
    • /
    • 2006
  • Statement of problem. Porcelain repair mainly involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studies extensively. Purpose. The objective of this study was to investigate the influence of composite resin and ceramic etching pattern on shear bond strength of Empress2 ceramic and observe the change of microstructure of ceramic according to etching methods. Material and methods. Eighty-five cylinder shape ceramic specimens (diameter 5mm, IPS Empress 2 core materials) embeded by acrylic resin were used for this study. The ceramic were specimens divided into sixteen experimental groups with 5 specimens in each group and were etched with phosphoric acid(37%, 65%) & hydrofluoric acid (4%, 9%) according to different etching times(30s, 60s, 120s 180s). All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Etched surfaces of ceramic specimens were coated with silane (Monobond-S) & adhesive(Heliobond) and built up composite resin using Teflon mold. Accomplished specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture(kg) was recorded. Shear bond strength data were analyzed with one way ANOVA and Duncan tests.(P<.05) Results. Maximum shear bond strength was $30.07{\pm}2.41(kg)$ when the ceramic was etched with 4% hydrofluoric acid at 120s. No significant difference was found between phosphoric etchant group and control group with respect to shear bond strength. Conclusion. Empress 2 ceramic surface was not etched by phosphoric acid, but etched by hydrofluoric acid.