• 제목/요약/키워드: residual learning

검색결과 196건 처리시간 0.021초

연령, 성별, 인종 구분을 위한 잔차블록 기반 컨볼루션 신경망 (Residual Blocks-Based Convolutional Neural Network for Age, Gender, and Race Classification)

  • 하사노바 노디라;신봉기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.568-570
    • /
    • 2023
  • The problem of classifying of age, gender, and race images still poses challenges. Despite deep and machine learning strides, convolutional neural networks (CNNs) remain pivotal in addressing these issues. This paper introduces a novel CNN-based approach for accurate and efficient age, gender, and race classification. Leveraging CNNs with residual blocks, our method enhances learning while minimizing computational complexity. The model effectively captures low-level and high-level features, yielding improved classification accuracy. Evaluation of the diverse 'fair face' dataset shows our model achieving 56.3%, 94.6%, and 58.4% accuracy for age, gender, and race, respectively.

위치 오차를 갖는 2관성 공진계에 대한 반복학습 제어의 적용에 관한 연구 (Application of Iterative Learning Control to 2-Mass Resonant System with Initial Position Error)

  • 이학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.307-310
    • /
    • 2003
  • In this paper, an iterative learning control method is applied to suppress the vibration of a 2-mass system which has a flexible coupling between a load an a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type learning iterative control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration. In order to handle the initial position error, the PD-type learning law is changed to PID-type and a weight function is added to suppress the residual vibration caused by the initial error. The simulation results show the effectiveness of the proposed learning method.

  • PDF

비선형 구동기의 변수추정을 통한 학습입력성형제어기 (Learning Input Shaping Control with Parameter Estimation for Nonlinear Actuators)

  • 김득현;성윤경;장완식
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1423-1428
    • /
    • 2011
  • 본 논문은 비선형 구동기를 포함한 유연시스템의 잔류변위저감을 위한 학습입력성형제어기를 제시한다. 제시되는 제어기는 비선형 구동기에 대한 입력성형제어기, 반복최소자승법 및 설계변수 updating rule 을 통합하여 개발된다. 비선형 구동기에 대응한 입력성형제어기 설계변수의 updating mechanism 을 개선하기 위한 잔류변위 측정함수가 제시된다. 제시된 제어방법을 pendulum system 에 적용하여 변수추정의 수렴성과 변위저감제어성능의 평가를 통해 수치해석적으로 실용성이 검증된다.

Deep Learning Assisted Differential Cryptanalysis for the Lightweight Cipher SIMON

  • Tian, Wenqiang;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.600-616
    • /
    • 2021
  • SIMON and SPECK are two families of lightweight block ciphers that have excellent performance on hardware and software platforms. At CRYPTO 2019, Gohr first introduces the differential cryptanalysis based deep learning on round-reduced SPECK32/64, and finally reduces the remaining security of 11-round SPECK32/64 to roughly 38 bits. In this paper, we are committed to evaluating the safety of SIMON cipher under the neural differential cryptanalysis. We firstly prove theoretically that SIMON is a non-Markov cipher, which means that the results based on conventional differential cryptanalysis may be inaccurate. Then we train a residual neural network to get the 7-, 8-, 9-round neural distinguishers for SIMON32/64. To prove the effectiveness for our distinguishers, we perform the distinguishing attack and key-recovery attack against 15-round SIMON32/64. The results show that the real ciphertexts can be distinguished from random ciphertexts with a probability close to 1 only by 28.7 chosen-plaintext pairs. For the key-recovery attack, the correct key was recovered with a success rate of 23%, and the data complexity and computation complexity are as low as 28 and 220.1 respectively. All the results are better than the existing literature. Furthermore, we briefly discussed the effect of different residual network structures on the training results of neural distinguishers. It is hoped that our findings will provide some reference for future research.

Hybrid Tensor Flow DNN and Modified Residual Network Approach for Cyber Security Threats Detection in Internet of Things

  • Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.237-245
    • /
    • 2022
  • The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.

채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법 (Deep Learning-based Super Resolution Method Using Combination of Channel Attention and Spatial Attention)

  • 이동우;이상훈;한현호
    • 한국융합학회논문지
    • /
    • 제11권12호
    • /
    • pp.15-22
    • /
    • 2020
  • 본 논문은 채널 강조(Channel Attentin)와 공간 강조(Spatial Attention) 방법을 결합한 딥 러닝 기반의 초해상도 방법을 제안하였다. 초해상도 과정에서 질감, 특징과 같은 주변 픽셀의 변화량이 큰 고주파 성분의 복원이 중요하다. 채널 강조와 공간 강조를 결합한 특징 강조를 이용한 초해상도 방법을 제안하였다. 기존의 CNN(Convolutional Neural Network) 기반의 초해상도 방법은 깊은 네트워크의 학습이 어려우며, 고주파 성분의 강조가 부족하여 윤곽선이 흐려지거나 왜곡이 발생한다. 문제를 해결하기 위해 스킵-커넥션(Skip Connection)을 적용한 채널 강조와 공간 강조를 결합한 강조 블록과 잔차 블록(Residual Block)을 사용하였다. 방법으로 추출한 강조된 특징 맵을 부-픽셀 컨볼루션(Sub-pixel Convolution)을 통해 특징맵을 확장하여 초해상도를 진행하였다. 이를 통해 기존의 SRCNN과 비교하여 약 PSNR는 5%, SSIM은 3% 향상되었으며 VDSR과 비교를 통해 약 PSNR는 2%, SSIM은 1% 향상된 결과를 보였다.

RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법 (Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network)

  • 응우엔 휴중;김응태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.703-712
    • /
    • 2019
  • 단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 그 대표적인 방법으로 영상의 특징 맵 기반 웨이블릿 계수 학습을 통해 고해상도 영상을 복원하는 WaveletSRNet이 있다. 하지만 복잡한 알고리즘으로 인해 계산량이 증대되어 처리 속도가 늦고 특징 추출할 때 특징 맵을 효율적으로 활용하지 못 한다는 단점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 단일 영상 초해상도 RDB-WaveletSRNet 기법을 제안한다. 제안된 기법은 잔여밀집블록(Residual Dense Block)을 사용하여 저해상도의 특징 맵을 효과적으로 추출하여 초해상도의 성능을 향상시키고 적절한 성장률을 설정하여 복잡한 계산량 문제까지 해결하였다. 또한 웨이블릿 패킷 분해를 사용하여 확대율에 맞게 웨이블릿 계수를 획득하므로 높은 확대율의 단일 영상 초해상도를 얻게 하였다. 다양한 영상에 대한 실험을 통하여, 제안하는 기법이 기존 기법보다 수행시간이 빠르며 영상 품질도 우수함을 입증하였다. 제안하는 방법은 기존 방법보다 화질은 PSNR 0.1813dB만큼 우수하며 속도는 1.17배 빠른 것을 실험을 통해 확인하였다.

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

역전파신경망을 이용한 구멍뚫기법의 편심 오차 예측 (Prediction for the Error due to Role Eccentricity in Hole-drilling Method Using Backpropagation Neural Network)

  • 김철;양원호;허성필;정기현
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.436-444
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is predicted using the artificial neural network. The neural network has trained training examples of stress ratio, normalized eccentricity, off-centered direction and stress error using backpropagation learning process. The prediction results of the error using the trained neural network are good agreement with FE analyzed ones.

Model-based Reference Trajectory Generation for Tip-based Learning Controller

  • Rhim Sungsoo;Lee Soon-Geul;Lim Tae Gyoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.357-363
    • /
    • 2005
  • The non-minimum phase characteristic of a flexible manipulator makes tracking control of its tip difficult. The level of the tip tracking performance of a flexible manipulator is significantly affected by the characteristics of the tip reference trajectory as well as the characteristics of the flexible manipulator system. This paper addresses the question of how to best specify a reference trajectory for the tip of a flexible manipulator to follow in order to achieve the objectives of reducing : tip tracking error, residual tip vibration, and the required actuation effort at the manipulator joint. A novel method of tip-based learning controller for the flexible manipulator system is proposed in the paper, where a model of the flexible manipulator system with a command shaping filter is used to generate a smooth and realizable tip reference trajectory for a tip-based learning controller.