• Title/Summary/Keyword: residual error

Search Result 604, Processing Time 0.023 seconds

Fine Frequency Synchronization Method for MB-OFDM UWB Systems

  • You, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.613-616
    • /
    • 2008
  • In this paper, a fine residual frequency offset estimation scheme is proposed for multiband orthogonal frequency division multiplexing ultra-wideband (MB-OFDM UWB) systems. The basic idea of our approach is based on the fact that two adjacent OFDM symbols carry the identical information in the MB-OFDM UWB system, thus removing the need of pilot symbols. The mean square error of the synchronization scheme is evaluated and simulation results are used to verify the effectiveness of the proposed estimator. When compared to the pilot-aided conventional estimator, the proposed estimator has a lower estimation error.

자기동조 퍼지 알고리즘에 의한 탄성 로보트 Arm 선단의 위치제어

  • 양길태;안상도;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.213-217
    • /
    • 1993
  • This paper presents an end-point of 1-link flexible robot arm with a tip-mass by using self-turning fuzzy algorithm. The arm is mounted on a translational mechanism driven by a ballscrew, whose rotation is controlled by CD servomotor. Tip position is controlled so that it follows a desired position. A feedback signal is composed of both the tip-displacement error and change in error. This paper gives the experimental tip responses according to the variations of tip-mass and beam-length, and also showes the effects of reducing the residual vibrations occuring at the end-point.

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.

Non-linear Data Classification Using Partial Least Square and Residual Compensator (부분 최소 자승법과 잔차 보상기를 이용한 비선형 데이터 분류)

  • 김경훈;김태영;최원호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • Partial least squares(PLS) is one of multiplicate statistical process methods and has been developed in various algorithms with the characteristics of principal component analysis, dimensionality reduction, and analysis of the relationship between input variables and output variables. But it has been limited somewhat by their dependency on linear mathematics. The algorithm is proposed to classify for the non-linear data using PLS and the residual compensator(RC) based on radial basis function network (RBFN). It compensates for the error of the non-linear data using the RC based on RBFN. The experimental result is given to verify its efficiency compared with those of previous works.

Fatigue Reliability Analysis Model for GFRP Composite Structures (GFRP 복합구조의 피로신뢰성 해석모형에 관한 연구)

  • 조효남;신재철;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.29-32
    • /
    • 1991
  • It is well known that the fatigue damage process in composite materials is very complicated due to complex failure mechanisms that comprise debounding, matrix cracking, delamination and fiber splitting of laminates. Therefore, the residual strength, instead of a single dominant crack length, is chosen to describe the criticality of the damage accumulated in the sublaminate. In this study, two models for residual strength degradation established by Yang-Liu and Tanimoto-Ishikawa that are capable of predicting the statistical distribution of both fatigue life and residual strength have been investigated and compared. Statistical methodologies for fatigue life prediction of composite materials have frequently been adopted. However, these are usually based on a simplified probabilistic approach considering only the variation of fatigue test data. The main object of this work is to propose a fatigue reliability analysis model which accounts for the effect of all sources of variation such as fabrication and workmanship, error in the fatigue model, load itself, etc. The proposed model is examined using the previous experimental data of GFRP and it is shown that it can be practically applied for fatigue problems in composite materials.

  • PDF

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Cation Self-Diffusin and Impurity Diffusion of Mn and Zn in CoO: (I) A comparison of the Residual Activity and the Tracer Sectioning Method

  • Lee, Jong-Ho;Martin, Manfred
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.90-94
    • /
    • 1998
  • Self diffusion coefficients of $^{67}$Co and impurity diffusion coefficients of $^{51}$Mn and $^{65}$Zn in single crystalline CoO have been measured by applying different radioactive isotopes simultaneously. To compare the residual activity method and the tracer sectioning method we analyzed our tracer diffusion experiments by using both methods simultaneously. According to our experimental results, the diffusion coefficients obtained from both methods are identical within experimental error, demonstrating the relibility of our experimental procedures. The diffusion coefficients of all the isotopes obtained during these test experiments for the methodology are similar in magnitude and show similar dependences on oxygen partial pressure. These first observations indicate that impurity diffusion of Mn and Zn occur via a vacancy mechanism as known for self diffusion of cobalt.

  • PDF

A Control Strategy for Systems with Single Flexible Mode to Reduce Residual Vibration (단일 유연 모드를 가지는 시스템의 잔여 진동을 최소화하기 위한 제어 전략)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2007
  • Many manufacturing devices must execute motions as quickly as possible to achieve profitable high-volume production. Most of them have devices having flexibility and a time delay of one sampling is added to the plants when they are controlled by fast discrete controllers, which brings about non-minimum phase zeros. This paper develops a control strategy that combines feedforward and feedback control with command shaping for such devices. First, the feedback controller is designed to increase damping and eliminate steady-state error. Next, the feedforward controller is designed to speed up the transient response. Finally, an appropriate reference profile is generated using command-shaping techniques to ensure fast point-to-point motions with minimum residual vibration. The particular focus of the paper is to understand the interactions between these individual control components. The resulting control strategy is demonstrated on a model of a high-speed semiconductor manufacturing machine.

A Study on the Compliance of a Compact Tension Test Specimen (소형인장시험편의 컴플라이언스에 관한 고찰)

  • Jeong, Gi-Hyeon;Seok, Chang-Seong;Yang, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3010-3017
    • /
    • 2000
  • For integrity evaluation of cracked or damaged structures, fracture toughness test results in ASTM are widely used. The fracture toughness values of the structures are used as an effective design criterion in nuclear plants and aircraft structures. Sometimes the difference of P-$\delta$ curve trend during the unloading /reloading cycle in the fracture toughness test using partial unloading compliance was observed. The phenomenon as a possible source of error in determining fracture toughness may be caused by the residual stress during unloading work-hardening and bucking of a specimen. Therefore, we evaluate the effect of bucking and compressive residual stress during the K-R and J-R testing using a finite element method.