• Title/Summary/Keyword: residual analysis

Search Result 3,236, Processing Time 0.031 seconds

The Finite Element Analysis for Comparision of Residual Stress at Cold Expansion Method and Interfernce Fit (홀확장법과 억지끼워맞춤의 잔류응력 비교를 위한 유한요소해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.419-424
    • /
    • 2001
  • The purpose of this study is comparing cold expansion method with interference fit. Cold expansion method and interference fit of fastener hole is using in the aerospace industry. These treatment lead to an improvement of fatigue life to the compressive residual stresses developed on the hole surface. But Research is nothing to about difference effect of between cold expansion method and interference fit. So In this paper, It is shown that Comparing cold expansion method with interference fit. and It is further shown that residual stress distribution according to plate thickness.

  • PDF

Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve (나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가)

  • Lee, Yun-Hee;Jang, Jae-Il;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.

Column Shortening Analysis of Composite Columns by Age-adjusted Effective Modulus Method (재령보정유효탄성계수법에 의한 합성기둥 축소량 해석)

  • Kim Han-Soo;Kim Jae-Keun;Kim Do-Kyoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.490-495
    • /
    • 2006
  • The analysis method proposed by PCA is widely used in calculating the column shortening of reinforced and composite columns of a tall building. However, residual creep factor which relates creep strain of reinforced concrete to creep strain of plain concrete is based on Rate of Creep Method (RCM) which has theoretical defects and is considered obsolete. In this paper, a new equation for the residual creep factor based on Age-adjusted Effective Modulus Method (AEMM) which is considered exact and better than RCM is proposed. The residual creep factor by RCM is found to be higher than one by AEMM, which means current PCA method overestimates the shortening of a reinforced concrete column. By using the residual creep factor by AEMM, more exact column shortening of a tall building can be obtainable with a simple modification to PCA method.

  • PDF

Analysis of residual thermal stress in an aluminosilicate core and silica cladding optical fiber preform

  • Shin, Woo-Jin;K. Oh
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.214-215
    • /
    • 2000
  • As silica based optical fibers and preforms are processed at a high temperature, residual stresses are bulit in the strucure when cooled down to the room temperature. The magnitude of the residual stress depends on the difference in the thermal expansion coefficients between core and cladding glass as well as on the temperature difference. Residual stress distribution determines the intrinsic strength and could affect the long term reliability of optical fibers. And furthermore, stress can introduces anisotropy into optical fibers by photoelastic effects. The analysis of thermal stress has been intensively studied for multimode fibers$^{(1)}$ and the authors and co-wokers recently reported the stress distribution in a depressed inner cladding structure$^{(2)}$ . The compositions of the glass in the previous studies, however, have been restricted to conventional glass formers, such as GeO2, B2O3, P2O5, Fluorine. (omitted)

  • PDF

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae S. G.;Yang Y. S.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.418-422
    • /
    • 2005
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire has been investigated. Test pieces were fabricated using die series with different mean and final reduction ratio. Surface residual stresses in the axial direction were measured by X-ray diffraction, Broker's 2-dimensional GADDS system. Results were compared with stress profiles which were calculated by 3D and 2D finite element simulation, Hibbitt's ABAQUS 6.4 program in Finite Element Analysis. By means of FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

  • PDF

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발 시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae, J.G.;Yang, Y.S.;Ban, D.Y.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.153-157
    • /
    • 2006
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire have been investigated. Test pieces were fabricated using die series with different mean and final reduction ratios. Surface residual stresses in the axial direction were measured by X-ray diffraction, Bruker's 2-dimensional GADDS system. The results were compared with stress profiles that were calculated by 3D and 2D finite element simulations, ABAQUS 6.4 program in finite element analysis(FEA). By means of the FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

Analysis of Residual Stress Singularities on Interfaces of Friction Welded SUH35/SUH3 (SUH35/SUH3 마찰용접 접합계면에 대한 잔류응력 특이성의 해석)

  • Chung, Nam-Yong;Park, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.104-111
    • /
    • 2005
  • With increasing use of SUH35/SUH3 dissimilar materials for automotive engine valves, it is required that stress singularities under residual stress on an interface for friction welded dissimilar materials analyzed to establish strength evaluation. The stress singularity $index{\lambda}$ and stress singularities $factor{\Gamma}$ were calculated from using the results of stress analysis to consider residual stress and loads. The stress singularities on variations for shapes and thickness of welded flashes were analyzed and discussed. This paper suggested that the strength evaluation by using the stress singularity factors as fracture parameters, considering the stress singularity on an interface edge of friction welded dissimilar materials will be useful.

Analysis of Residual Stresses Due to Shape Memory Effects (형상기억효과에 의해 발생되는 잔류응력의 해석)

  • 노홍길;김홍건;조영태;이동주;정태진;김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.147-152
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\sigma$>/sub/m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

Numerical Analysis of the Contour Method for Measuring Residual Stresses in Laser Shock Peened Ti-6Al-4V Strips

  • Shin Shang-Hyon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.290-296
    • /
    • 2005
  • The contour method is based on the elastic superposition principle, and relies on deformations that occur when a residually stressed part is cut along a plane. During the cut, the part is constrained at a location along the cut so that deformations are restrained as much as possible. The displacement is applied to an elastic FE model of the half. When plasticity is involved in the relaxation process, the superposition principle is no longer valid, and stress error in the resulting measurement of residual stress would be caused. Residual stress states in a laser peened Ti-6Al-4V strip were taken for the FE simulation.

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF