• Title/Summary/Keyword: research topic

Search Result 2,447, Processing Time 0.037 seconds

Research Trends Analysis of Information Security using Text Mining (텍스트마이닝을 이용한 정보보호 연구동향 분석)

  • Kim, Taekyung;Kim, Changsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.19-25
    • /
    • 2018
  • With the development of IT technology, various services such as artificial intelligence and autonomous vehicles are being introduced, and many changes are taking place in our lives. However, if secure security is not provided, it will cause many risks, so the information security becomes more important. In this paper, we analyzed the research trends of main themes of information security over time. In order to conduct the research, 'Information Security' was searched in the Web of Science database. Using the abstracts of theses published from 1991 to 2016, we derived main research topics through topic modeling and time series regression analysis. The topic modeling results showed that the research topics were Information technology, system access, attack, threat, risk management, network type, security management, security awareness, certification level, information protection organization, security policy, access control, personal information, security investment, computing environment, investment cost, system structure, authentication method, user behavior, encryption. The time series regression results indicated that all the topics were hot topics.

A Study on Research Trend for Nurses' Workplace Bullying in Korea: Focusing on Semantic Network Analysis and Topic Modeling (간호사의 직장 내 괴롭힘에 대한 국내 연구 동향 분석: 의미연결망분석과 토픽모델링 중심)

  • Choi, Jeong Sil;Kim, Youngji
    • Korean Journal of Occupational Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Purpose: The aim of this study was to identify core keywords and topic groups of workplace bullying researches in the past 10 years for better understanding research trend. Methods: The study was conducted in four steps: 1) collecting abstracts, 2) extracting and cleaning semantic morphemes, 3) building co-occurrence matrix and 4) analyzing network features and clustering topic groups. Results: 437 articles between 2010 and 2019 were retrieved from 5 databases (RISS, NDSL, Google scholar, DBPIA and Kyobo Scholar). Forty-one abstracts from these articles were extracted, and network analysis was conducted using semantic network module. The most important core keywords were 'turnover', 'intention', 'factor', 'program' and 'nursing'. Four topic groups were identified from Korean databases. Major topics were 'turnover' and 'organization culture'. Conclusion: After reviewing previous research, it has been found that turnover intention has been emphasized. Further research focused on various intervention is needed to relieve workplace bullying in nursing field.

Research trends over 10 years (2010-2021) in infant and toddler rearing behavior by family caregivers in South Korea: text network and topic modeling

  • In-Hye Song;Kyung-Ah Kang
    • Child Health Nursing Research
    • /
    • v.29 no.3
    • /
    • pp.182-194
    • /
    • 2023
  • Purpose: This study analyzed research trends in infant and toddler rearing behavior among family caregivers over a 10-year period (2010-2021). Methods: Text network analysis and topic modeling were employed on data collected from relevant papers, following the extraction and refinement of semantic morphemes. A semantic-centered network was constructed by extracting words from 2,613 English-language abstracts. Data analysis was performed using NetMiner 4.5.0. Results: Frequency analysis, degree centrality, and eigenvector centrality all revealed the terms ''scale," ''program," and ''education" among the top 10 keywords associated with infant and toddler rearing behaviors among family caregivers. The keywords extracted from the analysis were divided into two clusters through cohesion analysis. Additionally, they were classified into two topic groups using topic modeling: "program and evaluation" (64.37%) and "caregivers' role and competency in child development" (35.63%). Conclusion: The roles and competencies of family caregivers are essential for the development of infants and toddlers. Intervention programs and evaluations are necessary to improve rearing behaviors. Future research should determine the role of nurses in supporting family caregivers. Additionally, it should facilitate the development of nursing strategies and intervention programs to promote positive rearing practices.

A Study on the Imjin War's Historical Materials with Multi-layer Network Analysis and Topic Modeling (다중 네트워크 분석과 토픽 모델링을 이용한 임진왜란 시기 사료에 관한 연구)

  • Cho, HyunChul;Song, Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.167-198
    • /
    • 2022
  • Convergence science research is activated, and digital humanities research is also encouraged in humanities. Therefore, this study attempted to propose a experimental study that applies Text mining and Entitymetrics methods to historical materials. Annals of King Seonjo, revised Annals of King Seonjo, Miscellaneous Record of the War and Writings on Imjin War were used, also network analysis and DMR topic models were used to explore topic changes and common entities in historical sources. Through the results, it was possible to propose the availability of quantitative analysis for text data, presenting a timing change of a specific topic, and an undiscovered relationship between person entities.

Topic Modeling of Korean Newspaper Articles on Aging via Latent Dirichlet Allocation

  • Lee, So Chung
    • Asian Journal for Public Opinion Research
    • /
    • v.10 no.1
    • /
    • pp.4-22
    • /
    • 2022
  • The purpose of this study is to explore the structure of social discourse on aging in Korea by analyzing newspaper articles on aging. The analysis is composed of three steps: first, data collection and preprocessing; second, identifying the latent topics; and third, observing yearly dynamics of topics. In total, 1,472 newspaper articles that included the word "aging" within the title were collected from 10 major newspapers between 2006 and 2019. The underlying topic structure was analyzed using Latent Dirichlet Allocation (LDA), a topic modeling method widely adopted by text mining academics and researchers. Seven latent topics were generated from the LDA model, defined as social issues, death, private insurance, economic growth, national debt, labor market innovation, and income security. The topic loadings demonstrated a clear increase in public interest on topics such as national debt and labor market innovation in recent years. This study concludes that media discourse on aging has shifted towards more productivity and efficiency related issues, requiring older people to be productive citizens. Such subjectivation connotes a decreased role of the government and society by shifting the responsibility to individuals not being able to adapt successfully as productive citizens within the labor market.

Research on Service Enhancement Approach based on Super App Review Data using Topic Modeling (슈퍼앱 리뷰 토픽모델링을 통한 서비스 강화 방안 연구)

  • Jewon Yoo;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.343-356
    • /
    • 2024
  • Super app is an application that provides a variety of services in a unified interface within a single platform. With the acceleration of digital transformation, super apps are becoming more prevalent. This study aims to suggest service enhancement measures by analyzing the user review data before and after the transition to a super app. To this end, user review data from a payment-based super app(Shinhan Play) were collected and studied via topic modeling. Moreover, a matrix for assessing the importance and usefulness of topics is introduced, which relies on the eigenvector centrality of the inter-topic network obtained through topic modeling and the number of review recommendations. This allowed us to identify and categorize topics with high utility and impact. Prior to the transition, the factors contributing to user satisfaction included 'payment service,' 'additional service,' and 'improvement.' Following the transition, user satisfaction was associated with 'payment service' and 'integrated UX.' Conversely, dissatisfaction factors before the transition encompassed issues related to 'signup/installation,' 'payment error/response,' 'security authentication,' and 'security error.' Following the transition, user dissatisfaction arose from concerns regarding 'update/error response' and 'UX/UI.' The research results are expected to be used as a basis for establishing strategies to strengthen service competitiveness by making super app services more user-oriented.

A Study on the Categorizes of School Bullying through Topic Modelling Method (토픽모델링 기반의 학교폭력 사례 유형 연구)

  • Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.181-185
    • /
    • 2021
  • As part of an effort to derive measures to prevent school violence, which is continuously emphasized in the school field, this study tried to examine the topic that has recently become an issue related to school violence from the perspective of data science. In particular, it was attempted to crawl posts related to school violence using online SNS data and examine the characteristics of each type by using the topic modeling method. As a result of arranging the keywords for each topic derived from the topic modeling analysis by type, it was possible to divide the contents into three main categories: prevention of school violence, punishment of perpetrators, and measures to be taken. First, as the contents of school violence prevention activities, it is the contents of the role of specialized organizations for the prevention of school violence. Second, it was derived from the contents of measures and procedures for school violence. Third, it was possible to examine the contents of recent issues of school violence. In future research, it is necessary to conduct research that is used to solve the social problems facing based on data-based prediction.

  • PDF

Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis (토픽모델링과 시계열 회귀분석을 활용한 헬스케어 분야의 뉴스 빅데이터 분석 연구)

  • Eun-Jung Kim;Suk-Gwon Chang;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.163-177
    • /
    • 2023
  • This research aims to identify key initiatives and a policy approach to support the industrialization of the sector. The research collected a total of 91,873 news data points relating to healthcare between 2013 to 2022. A total of 20 topics were derived through topic modeling analysis, and as a result of time series regression analysis, 4 hot topics (Healthcare, Biopharmaceuticals, Corporate outlook·Sales, Government·Policy), 3 cold topics (Smart devices, Stocks·Investment, Urban development·Construction) derived a significant topic. The research findings will serve as an important data source for government institutions that are engaged in the formulation and implementation of Korea's policies.

A Text Mining Study on Endangered Wildlife Complaints - Discovery of Key Issues through LDA Topic Modeling and Network Analysis - (멸종위기 야생생물 민원 텍스트 마이닝 연구 - LDA 토픽 모델링과 네트워크 분석을 통한 주요 이슈 발굴 -)

  • Kim, Na-Yeong;Nam, Hee-Jung;Park, Yong-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.205-220
    • /
    • 2023
  • This study aimed to analyze the needs and interests of the public on endangered wildlife using complaint big data. We collected 1,203 complaints and their corresponding text data on endangered wildlife, pre-processed them, and constructed a document-term matrix for 1,739 text data. We performed LDA (Latent Dirichlet Allocation) topic modeling and network analysis. The results revealed that the complaints on endangered wildlife peaked in June-August, and the interest shifted from insects to various endangered wildlife in the living area, such as mammals, birds, and amphibians. In addition, the complaints on endangered wildlife could be categorized into 8 topics and 5 clusters, such as discovery report, habitat protection and response request, information inquiry, investigation and action request, and consultation request. The co-occurrence network analysis for each topic showed that the keywords reflecting the call center reporting procedure, such as photo, send, and take, had high centrality in common, and other keywords such as dung beetle, know, absence and think played an important role in the network. Through this analysis, we identified the main keywords and their relationships within each topic and derived the main issues for each topic. This study confirmed the increasing and diversifying public interest and complaints on endangered wildlife and highlighted the need for professional response. We also suggested developing and extending participatory conservation plans that align with the public's preferences and demands. This study demonstrated the feasibility of using complaint big data on endangered wildlife and its implications for policy decision-making and public promotion on endangered wildlife.

A Study on Issue Tracking on Multi-cultural Studies Using Topic Modeling (토픽 모델링을 활용한 다문화 연구의 이슈 추적 연구)

  • Park, Jong Do
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.273-289
    • /
    • 2019
  • The goal of this study is to analyze topics discussed in academic papers on multiculture in Korea to figure out research trends in the field. In order to do topic analysis, LDA (Latent Dirichlet Allocation)-based topic modeling methods are employed. Through the analysis, it is possible to track topic changes in the field and it is found that topics related to 'social integration' and 'multicultural education in schools' are hot topics, and topics related to 'cultural identity and nationalism' are cold topics among top five topics in the field.