이 연구는 한국 사회에서 명문대로 분류되는 한 대학의 학생이 작성한 학벌에 대한 글쓰기 과제를 분석하여 이들이 가진 학벌에 대한 인식을 확인하고 내재한 의미를 분류한 연구이다. 분석에서 활용한 방법은 토픽 모델 중 잠재 디리클레 할당 방법으로 총 172편의 문서를 분석한 후 각 토픽에서 빈출한 키워드가 자주 등장하는 문서를 중심으로 학생의 인식을 탐색하였다. 분석 결과 도출한 토픽은 학벌의 순기능(토픽 1), 양날의 검(토픽 2), 권력공동체(토픽 3), 승리의 징표(토픽 4), 학벌의 역기능(토픽 5)의 다섯 가지이다. 각 토픽에서 가장 빈번하게 제시되는 단어를 정리하면 다음과 같다. 토픽 1에서는 '개인', '지위', '수단'이, 토픽 2는 '정의(定義)', '학교', '의미'가, 토픽 3은 '사람', '출신', '권력'이, 토픽 4는 '대학(교)', '능력', '노력'이, 토픽 5는 '학력', '우리나라', '출신'이었다. 이상의 분석을 통해 우리는 명문대 학생이 학벌을 논할 때 계급과 학벌 공동체, 사회와의 관련성을 통하여 계급재생산을 고려하지만 인종 및 민족와 같이 학벌에 영향을 미치는 기타 요인에 대하여는 크게 관심을 두지 않고 있음을 확인하였다. 앞으로의 관련 강의에서 보다 다양한 요인과 학벌의 관련성을 다룰 필요가 있다.
We propose a generative probabilistic model with Dirichlet prior distribution for topic modeling and text similarity analysis. It assigns a topic and calculates text correlation between documents within a corpus. It also provides posterior probabilities that are assigned to each topic of a document based on the prior distribution in the corpus. We then present a Gibbs sampling algorithm for inference about the posterior distribution and compute text correlation among 50 abstracts from the papers published by IEEE. We also conduct a supervised learning to set a benchmark that justifies the performance of the LDA (Latent Dirichlet Allocation). The experiments show that the accuracy for topic assignment to a certain document is 76% for LDA. The results for supervised learning show the accuracy of 61%, the precision of 93% and the f1-score of 96%. A discussion for experimental results indicates a thorough justification based on probabilities, distributions, evaluation metrics and correlation coefficients with respect to topic assignment.
Purpose - Based on literature studies of movie reviews and movie ratings, this study raised two research questions on the contents of online word of mouth and the number of movie screens as mediator variables. Research question 1 wanted to figure out which topics of word groups had a positive or negative impact on movie ratings. Research question 2 tried to identify the role of the number of movie screens between movie ratings and box office outcomes. Design/methodology/approach - Through R program, this study collected about 82,000 movie reviews and movie ratings posted on Naver's movie website to examine the role of online word of mouths and movie screen counts in 10 movies that were considered commercially unsuccessful with fewer than 2 million viewers despite securing about 1,000 movie screens. To confirm research question 1, topic modeling, a text mining technique, was conducted on movie reviews. In addition, this study linked the movie ratings posted on Naver with information of KOBIS by date, to identify the research question 2. Findings - Through topic modeling, 5 topics were identified. Topics found in this study were largely organized into two groups, the content of the movie (topic 1, 2, 3) and the evaluation of the movie (topics 4, 5). When analyzing the relationship between movie reviews and movie ratings with 5 mediators identified in topic modeling to probe research question 1, the topic word groups related to topic 2, 3 and 5 appeared having a negative effect on the netizen's movie ratings. In addition, by connecting two secondary data by date, analysis for research question 2 was implemented. The outcomes showed that the causal relationship between movie ratings and audience numbers was mediated by the number of movie screens. Research implications or Originality - The results suggested that the information presented in text format was harder to quantify than the information provided in scores, but if content information could be digitalized through text mining techniques, it could become variable and be analyzed to identify causality with other variables. The outcomes in research question 2 showed that movie ratings had a direct impact on the number of viewers, but also had indirect effects through changes in the number of movie screens. An interesting point is that the direct effect of movie ratings on the number of viewers is found in most American films released in Korea.
본 연구의 주된 목적은 LDA를 이용하여 국제지적연구의 주제와 연구추세를 확인하는 것이었다. 이러한 연구목적을 달성하기 위해 나는 LDA와 국제지적연구에 관한 선행연구를 검토하였고 이를 기반으로 4 개의 연구 질문을 설정하였다. 이러한 연구 질문에 답을 구하기 위해 나는 FIG Peer Review Journal에 2008년 1월1일 부터 2017년 10월 31일 사이에 발표된 370편의 논문들을 LDA를 이용하여 분석하였다. 분석의 결과 나는 국제지적연구에 12개의 주요 주제가 존재하고 있음을 확인하였다. 그리고 이러한 주제 중에 가장 영향력 있는 주제는 topic 2 (지적정보시스템)로 확인되었으며 또한 topic 5 (토지개발과 토지행정)도 전체 문서에서 중요한 역할을 수행하고 있는 주제로 파악되었다. 이두 주제는 지난 10년 동안 추세선이 매우 활발하게 움직인 가장 인기 있는 주제들로서 앞으로의 지적연구에서도 주도적인 역할을 수행할 것이 틀림없다.
The research topics of more than 1,900 wind energy papers registered in the Korean Journal Citation Index (KCI) were modeled into 25 topics using latent directory allocation (LDA), and their consistency was cross-validated through principal component analysis (PCA) of the document word matrix. Key research topics in the wind energy field were identified as "offshore, wind farm," "blade, design," "generator, voltage, control," 'dynamic, load, noise," and "performance test." As a new method to determine the similarity between research topics in journals, a systematic evaluation method was proposed to analyze the correlation between topics by constructing a journal-topic matrix (JTM) and clustering them based on topic similarity between journals. By evaluating 24 journals that published more than 20 wind energy papers, it was confirmed that they were classified into meaningful clusters of mechanical engineering, electrical engineering, marine engineering, and renewable energy. It is expected that the proposed systematic method can be applied to the evaluation of the specificity of subsequent journals.
As interest in the sustainable fashion industry continues to increase along with climate issues, it is necessary to identify research trends in sustainable fashion and seek new development directions. Therefore, this study aims to analyze research trends on sustainable fashion. For this purpose, related papers were collected from the KCI (Korean Citation Index) and Scopus, and 340 articles were used for the study. The collected data went through data transformation, data preprocessing, topic modeling analysis, core topic derivation, and visualization through a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: consumer clothing consumption behavior and environment, upcycle product development, product types by environmental approach, ESG business activities, materials and material development, process-based approach, lifestyle and consumer experience, and brand strategy. Topics were related to consumption, production, and education of sustainable fashion, respectively. KCI analysis results and Scopus analysis results derived eight topics but showed differences from the comprehensive analysis results. This study provides primary data for exploring various themes of sustainable fashion. It is significant in that the data were analyzed based on probability using a research method that excluded the subjective value of the researcher. It is recommended that follow-up studies be conducted to examine social trends.
Objectives: The aim of this study is to analyze cancer research trends in traditional Korean medical journals indexed in the Korea Citation Index since 2000. Methods: Cancer research papers published in traditional Korean medical journals were searched in databases from inception to October 2022. The numbers of publications by journal and by year were descriptively assessed. After natural language processing, topic modeling (based on Latent Dirichlet allocation) and keyword network analysis were conducted. Results: This research trend analysis involved 1,265 papers. Six topics were identified by topic modeling: case reports on symptom management, literature reviews, experiments on apoptosis, herbal extract treatments of breast carcinoma cell lines, anti-proliferative effects of herbal extracts, and anti-tumor effects. Keyword network analysis found that the effects of herbal medicine were assessed in clinical and experimental studies, while acupuncture was mainly mentioned in clinical reports. Conclusions: Cancer research papers in traditional Korean medical journals have contributed to evidence-based medicine. Further experimental studies are needed to elucidate the effects of on different hallmarks of cancer. Rigorous clinical studies are needed to support clinical guidelines.
Objective : The purpose of this study was to identify the trend of research in the Korean Journal of Oriental Preventive Medicine and to suggest future perspective for oriental preventive medicine research. Method : The contents of 344 articles published in this journal was reviewed from its beginning year 1997 to year 2010. Result : The number of articles was increased as times go on. An analysis of the research design showed, experimental research (in vivo or in vitro) was 36.9%, survey research was 26.5%, review was 20.1%. In the major classifications of topics published, health management 28.5%, oriental medicine effectiveness 25.3%, herbal safety and toxicity 13.1%, and environmental and occupational medicine 9.0% respectively. Conclusion : There has been a lack of health preservation(Yang-saeng) topic, epidemiology and health statistics topic. Further research need qualitative study and each subjects of oriental preventive medicine.
본 연구는 건설 안전사고에 대한 트랜드 분석을 위해 LDA(Latent Dirichlet Allocation) 기반의 토픽모델링(Topic Modeling)을 제시하여 분석하고자 한다. 특히, 건설산업의 안전사고를 예방하기 위해 제시되고 있는 기존의 다양한 정형데이터 분석에서 벗어난 비정형 데이터 분석 기반의 토픽 모델링을 통해 건설 안전사고 주요 핵심 키워드의 흐름에 대해 파악이 가능하다. 본 방법론을 적용하기 위해 540개의 건설 안전사고 관련 뉴스데이터를 수집하였다. 이를 기반으로, 10가지 토픽과 각 토픽 내의 10가지 키워드를 통해 주요 이슈를 도출하였고 각 토픽에 대한 2017년 1월부터 2018년 2월까지의 뉴스 데이터를 월별 시계열 분석을 통해 향후 토픽에 관한 이슈를 예측한다. 본 연구를 바탕으로 향후 건설 안전사고의 다양한 이슈를 선제적으로 예측하고 이를 기반으로 건설 안전사고 정책과 연구에 좋은 방향을 제시할 것으로 판단한다.
이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.