• Title/Summary/Keyword: research objects

Search Result 3,164, Processing Time 0.031 seconds

Discovery and in-depth research on Interstellar Objects

  • Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.61.5-62
    • /
    • 2021
  • Interstellar objects (ISOs) provide essential information on the physical and chemical properties of the environment when extrasolar systems are formed. Since 2017, two interstellar objects, 1I/2017 ('Oumuamua) and C/2019 Borisov, have been observed passing our solar system. The first interstellar object, named 1I/2017 ('Oumuamua), exhibits several peculiar properties that cannot be explained based on our knowledge of solar system objects, including extreme elongation and non-gravitational acceleration. Its nature and origins remain a mystery. In this talk, I will first describe the basic observational properties of 'Oumuamua and review various theories proposed to explain these features. I will then present our results, ruling out the most promising proposal that 'Oumuamua was made out of molecular hydrogen ice (solid hydrogen). Finally, I will discuss prospects for the detection of ISOs with LSST and in-depth research through multi-wavelength and tracers.

  • PDF

Research Trends on Engineering Education in the United States - Focus on Journal of Engineering Education - (미국 공학교육 연구 동향 - Journal of Engineering Education을 중심으로 -)

  • Wee, Seonbouk;Jo, Hanjin;Kim, Dongyoung;Byeon, Hyesoo;Kim, Taehoon
    • Journal of Engineering Education Research
    • /
    • v.24 no.4
    • /
    • pp.61-74
    • /
    • 2021
  • The purpose of this study is to provide a direction for domestic engineering education research by analyzing the research trends of JEE(Journal of Engineering Education). The results of analyzing research trends regarding research topics, research objects and research methods are as follows. First, by research topic, 'Diffusion of Educational Innovation' was found to have the highest proportion with 52 articles(21%). Second, by research objects, 'university students' showed the highest proportion with 148 articles(53.6%). Third, by research method (large category), 'quantitative research' had the highest proportion with 132 articles(53.2%). By research method (medium category), 'survey research' had the highest proportion with 129 articles(33.5%). Based on the results of this study, future engineering education research should be conducted to contribute to holistic development through diversification of research topics, methods, and objects.

Virtual Domino: Interactive Physics Simulation and Experience

  • Shahab, Qonita M.;Kwon, Yong-Moo;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.954-959
    • /
    • 2006
  • Virtual Reality simulation enables immersive 3D experience of a Virtual Environment. A simulation-based VE can be used to map real world phenomena into virtual experience. This research studies on the use of Newton's physics law to demonstrate the effects of forces upon object's falling movement, and their effects towards other fallible objects. A reconfigurable simulation enables users to reconfigure the parameters of the objects involved in the simulation, so that they can see different effects from the different configurations, such as force magnitude and distance between objects. This concept is suitable for a classroom learning of physics law. Preliminary implementation is done on a PC with a joystick for 4DOF movement. The graphics is implemented by SGI OpenGL Performer. A middleware called NAVERLib that consists of Performer's modules for easy XML-based configuration is used for management of visualization, network and devices connection, and where the engine of this domino simulation is attached.

  • PDF

Representing Topological Relationships for 3-Dimensional Spatial Features

  • Lee, Seong-Ho;Kim, Kyong-Ho;Kim, Sung-Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.128-132
    • /
    • 2002
  • One of the fundamental components important to the analysis of spatial objects is to represent topological relationships between spatial features. Users of geographic information systems retrieve a lot of objects from spatial database and analyze their condition by means of topological relationships. The existing methods that represent these relationships have the disadvantage that they have limited information in $R^2$. In this paper, we represent and define the topological relationships between 3-dimensional spatial objects using the several representing methods of 2-dimensional features. We use the diverse representing methods, which include the 4-, 9-intersection, dimension extended and calculus-based method. Furthermore, we discuss OGC's topological relationships and operators for 3-dimensional spatial data.

  • PDF

Object Tracking for a Video Sequence from a Moving Vehicle: A Multi-modal Approach

  • Hwang, Tae-Hyun;Cho, Seong-Ick;Park, Jong-Hyun;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.367-370
    • /
    • 2006
  • This letter presents a multi-modal approach to tracking geographic objects such as buildings and road signs in a video sequence recorded from a moving vehicle. In the proposed approach, photogrammetric techniques are successfully combined with conventional tracking methods. More specifically, photogrammetry combined with positioning technologies is used to obtain 3-D coordinates of chosen geographic objects, providing a search area for conventional feature trackers. In addition, we present an adaptive window decision scheme based on the distance between chosen objects and a moving vehicle. Experimental results are provided to show the robustness of the proposed approach.

  • PDF

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

A Study on Enhancement of Orbit Prediction Precision for Space Objects Using TLE (TLE를 이용한 우주물체 궤도예측 정밀도 향상 연구)

  • Yim, Hyeonjeong;Jung, Ok-Chul;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.270-278
    • /
    • 2014
  • This paper describes an improvement of space objects orbit prediction. To screen possible collisions between operational satellites and space objects, the TLE (Two-Line Element) was used as pseudo-measurement and than the orbit determination and orbit prediction were performed through the flight dynamics system. For determining the orbits, the state vectors were assumed by a series of TLEs within a certain period. The propagation error was analyzed according to the fitting period and a number of pseudo-observations. In order to find out the improvement of orbit prediction with the proposed method, KOMPSAT-2, 3 having the precise orbit in the meter-level range were first applied. Then the result applied to space objects under the same conditions was analyzed. As a result of the RMS error comparison with the orbit prediction of space object, the precision of orbit prediction was improved by approximately 90% for seven days prediction. The improved orbit prediction of space objects can be utilized in the daily analysis for initial screening of the close space objects at high risk.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.

STUDY ON THERMAL MODELING METHODS OF A CYLINDRICAL GROUND OBJECT CONSIDERING THE SPECTRAL SOLAR RADIATION THROUGH THE ATMOSPHERE

  • Choi Jun-Hyuk;Choi Mi-Na;Gil Tae-Jun;Kim Tae-Kuk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.205-208
    • /
    • 2005
  • This research is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground considering the spectral solar radiation through the atmosphere. The thermal modelling is essential for identifying the objects on the scenes obtained from the satellites. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We developed a software that could be used to model the thermal problems of the ground objects irradiated by the spectral solar radiation. This software can be used to handle the conduction within the object as a one-dimensional mode into the depth or as a three-dimensional mode through the media. LOWTRAN7 is used to model the spectral solar radiation including the direct and diffuse solar radiances. In this paper, temperature distributions on the objects obtained by using the one-dimensional and the three-dimensional thermal models are compared with each other to examine the applicability of the relatively easy-to-apply one-dimensional model.

  • PDF

Development of Program Evaluating the Effects on the Secondary Side of Nuclear Power Plant of Steam Generator due to Foreign Objects (원자력발전소 증기발생기 2차측 Free-Span 잔류물질 영향평가 전산 프로그램 개발)

  • Yu, Hyeon-Ju
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.26-28
    • /
    • 2006
  • When materials such as metal are into the secondary side of steam generator, they, so called foreign objects, may have influences on the integrity of the steam generator tubes. They cause the tube wear due to the relative motion between the tubes and foreign objects and the tube impact due to flow. The best way to avoid the effects is to remove all the foreign objects. However, it is not easy to remove the foreign materials thoroughly due to their condition such as the location. Considering the wear and impact by the foreign materials, KEPRI(Korea Electric Power Research Institute) developed the methodology to evaluate the foreign materials analytically. This methodology was described with a computer program in order to obtain the fast results. The program informs whether the tubes have the structural integrity when the foreign material strikes the tubes. Moreover, this gives us the remaining life of the steam generator tubes. In this paper, the program, which evaluates the effects of the foreign objects in the secondary side of steam generator, is introduced.

  • PDF