• Title/Summary/Keyword: required pressure

Search Result 2,296, Processing Time 0.035 seconds

A Study of Steam Turbine Throttle Flow from Measured First Stage Shell Pressure (증기터빈 1단 Shell 압력측정에 의한 교축유동 고찰)

  • Yoon, In-Soo;Lee, Jae-Heon;Yu, Ho-Seon;Moon, Seung-Jae;Lee, Tae-Gu;Hur, Jin-Huek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.373-376
    • /
    • 2008
  • Industrial Steam Turbine first stage shell pressure is related to throttle flow. Theoretically, first stage shell pressure could, therefore, be measured and used as an index of turbine throttle flow. However, accurate flow measurements show that this pressure is not a reliable index of the actual flow. Data analysis of steam turbinessubjected to ASME acceptance tests shows that the use of first stage shell pressure as an index of throttle flow produced errors as large as 9.6 %. The mean of the errors was +2.2% with a standard deviation of ${\pm}$2.8 %. Applications that require an accuratedetermination of turbine steam flow, such as turbine acceptance testing, should, therefore, not rely on this method. Therefore, First stage shell pressure measurement serves as a valid and economical indicator of turbine throttle flow in cases where a high degree of accuracy in throttle flow measurement is not required but repeatability is desired, such as for boiler control. Generally speaking, Steam turbine first stage shell pressure may also be a very useful monitor of turbine performance when used with certain other turbine measurements.

  • PDF

The Flow Characteristics of Pressure Control Valves for Natural Refrigerants (천연 냉매용 압력제어밸브의 유동특성 평가)

  • Kang, Hyo-Lim;Park, Hyung-Joon;Kim, Ga-Eun;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2020
  • Research into natural refrigerants that use CO2, instead of chlorofluorocarbons and hydrofluorocarbons, has increased due to the environmental problems caused by ozone depletion. CO2 refrigerants are more environmentally friendly than conventional refrigerants because they have better latent heat of evaporation and heat transfer efficiency properties. However, they have very low critical temperatures and require high design pressures; therefore, pressure control valves, which reduce the pressure of the CO2 refrigerant to a safe level and apply it to the refrigerant air conditioning system, are necessary to secure stability against high pressure. In the present study, we evaluated the flow characteristics and valve performance of the pressure control valve using a CO2 refrigerant by measuring the pressure, velocity, and flow coefficient. In addition, we examined the applied forces caused by the internal pressure from the highly pressurized CO2 refrigerant and required thrust characteristics.

Study on the Relationship between Vascular Perfusion and Interface Pressure under the Ischial Tuberosity in the Sitting Posture (앉은 자세에서 좌골결절의 접촉압력과 혈류량과의 관계에 대한 연구)

  • Heo H.;Bae T.S.;Lee S.M.;Kim S.K.;Kim K.H.;Mun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.645-646
    • /
    • 2006
  • Pressure-induced decubitus is a serious disease among the elderly people. Interface pressure occluding vascular perfusion is known to be a cause of decubitus. Therefore, it is essential to quantify the relationship between vascular perfusion and interface pressure among the elderly people. Nine elderly normal people ($57.8{\pm}5.6\;years,\;63.3{\pm}7.0kg,\;1.68{\pm}0.05m$) were participated. Pressure was applied on the ischial tuberosity in the sitting posture from 0mmHg to 135mmHg as capillary vascular perfusion was recorded. The average interface pressure to occlude vascular perfusion under the ischial tuberosity is 120mmHg. Vascular perfusion values at the capillary occlusion is often lower than 60% of the vascular perfusion at 15mmHg. Higher sampling number is required to have more accurate results.

  • PDF

Study on the pressure self-adaptive water-tight junction box in underwater vehicle

  • Huang, Haocai;Ye, Yanying;Leng, Jianxing;Yuan, Zhuoli;Chen, Ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.302-312
    • /
    • 2012
  • Underwater vehicles play a very important role in underwater engineering. Water-tight junction box (WJB) is one of the key components in underwater vehicle. This paper puts forward a pressure self-adaptive water-tight junction box (PSAWJB) which improves the reliability of the WJB significantly by solving the sealing and pressure problems in conventional WJB design. By redundancy design method, the pressure self-adaptive equalizer (PSAE) is designed in such a way that it consists of a piston pressure-adaptive compensator (PPAC) and a titanium film pressure-adaptive compensator (TFPAC). According to hydro-mechanical simulations, the operating volume of the PSAE is more than or equal to 11.6 % of the volume of WJB liquid system. Furthermore, the required operating volume of the PSAE also increases as the gas content of oil, hydrostatic pressure or temperature difference increases. The reliability of the PSAWJB is proved by hyperbaric chamber tests.

Study on Development of Inducing Airflow Duct System for Kitchen Hood Using Ejector Method (이젝터 기술을 활용한 주방후드용 기류유인 덕트 시스템의 개발에 관한 연구)

  • Son, Yu-Ra;Hong, Seong-Gyu;Yang, Jeong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.27-40
    • /
    • 2019
  • Kitchen hoods are limited in discharging all contaminants produced during cooking. Contaminants that have not been discharged can rise to the upper part of the kitchen and become stacked. To solve this problem, there is a way to increase the air volume of the kitchen hood, but there are limits, so a new system is required. This study proposes the Duct System (IADK : Inducing Airflow Duct system for Kitchen hood )through 3D printers and experiments. To do this, the pressure is measured to verify the three levels of air volume provided by the kitchen hood. To check the degree of loss of flow in the existing kitchen hood system, install flexible ducts alone to measure the pressure. Change the internal diameter and type of connection of the IADK and measure the pressure. The air pressure, static pressure difference, and loss factor are calculated and analyzed using the pressure measured through the experiment.

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Development of an Evaluation Method for the Flow Rate Performance of Gas Sampling Pumps Using Adsorbent Tubes (흡착튜브를 이용한 가스상물질 채취용 펌프의 유량성능 평가방법)

  • Kim, Nam Hee;Song, Ho June;Kim, Ki Youn;Ma, Hye Lan;Yi, Gwang Yong;Jeong, Jee Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2014
  • Objectives: Flow rate stability is very important for obtaining reliable measurements. However there is no easily used method for checking whether the flow rate set at the initial stage is sustained during sampling. The purpose of this study was to develop a method to evaluate the flow rate performance of gas sampling pumps with adsorbents commonly used to sample gases. Materials and methods: We tested the back pressure of gas sampling pumps commonly used in Korea with adsorbents such as charcoal and silica tubes and attempted to discover the combination conditions of adsorbents in accordance with back pressure required by ISO standard 13137. Results: We found the combination of sampling adsorbents to be applicable to the pressure drop required by the ISO standard for evaluating flow rate stability under increasing pressure drop and long term (eight-hour) performance. Conclusions: This evaluation method of using a sampling media matrix for checking flow rate stability as proposed by this study could be a highly useful tool for determining the reliability of the performance pumps before sampling.

Development of an Evaluation Method for Flow Rate Performance of Particulate Sampling Pump using Three-pieces Cassette Holder Containing Filters (여과지가 장착된 3단 카세트를 이용한 입자상물질 채취용 펌프의 유량성능 평가방법)

  • Song, Ho-June;Kim, Nam-Hee;Kim, Ki-Youn;Ma, Hye-Lan;Lee, Kwang-Young;Jeong, Jee-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.348-355
    • /
    • 2013
  • Objectives: In working environment measurement, sampling is an important stage for obtaining reliable result as analysis. A personal air sampling pump is one of the most fundamental and important element in the work environment measurement, but it remains at the level of calibrating the flow rate of the pump before and after sampling. There is no checking whether the flow rate set at the initial stage would be hold during sampling. The purpose of this study was to develop a method to evaluate the flow rate performance of particulate sampling pump with three-pieces cassette holder containing filters commonly used to sample particulate. Materials and methods: We tested back pressure of particulate sampling pumps commonly used in Korea with three-pieces cassette holder containing various filters, and tried to find out the combination conditions of filters in accordance with back pressure required by ISO standard 13137. Results: We found out the matrix of sampling media such as three-pieces cassette holder containing filters applicable to the pressure drop required by the ISO standard for evaluating the flow rate stability under increasing pressure drop and long term(8 hour) performance. Conclusions: This evaluation method using sampling media matrix for checking flow rate stability proposed by this study could be very useful tool to find out good performance pumps before sampling.

Sit-to-Stand Movement and Static Standing Balance Differences between Young and Older Adults (젊은 성인과 노인의 앉아서 일어서기 움직임과 정적 서기 균형 차이)

  • Shin, Jaewook;Bae, Wonsik;Lee, Hyunok
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.3
    • /
    • pp.61-68
    • /
    • 2016
  • Purpose : The purpose of this study was to examine the differences in sit-to-stand movement and static standing balance between young adults and older adults Methods : Thirty young adults and thirty older adults participated in this study. The Good Balance System was used to assess participants' sit-to-stand movement and static standing balance. The sit-to-stand movement was measured as mediolateral and anterioposterior displacement of the centre of pressure (mm/s) while sit-to-stand on a force platform, and time required to complete a sit-to-stand movement on a force platform. The static standing balance was measured as mediolateral and anterioposterior displacement of the center of pressure (mm/s) and velocity moment (mm2/s) while standing on a force platform with opened eyes and with closed eyes. Result : A significant difference was found in the mediolateral and anterioposterior center of pressure displacement and the time required to complete a sit-to-stand movement of the two groups (p<.05). A significant difference between the groups was found as to mediolateral centre of pressure displacement and the velocity moment when standing with opened eyes and with closed eyes (p<.05). Conclusion : In conclusion, older adults showed decreased sit-to-stand movement and static standing balance ability compared to the young adult. Clinicians should consider sit-to-stand and balance training for older adult.

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.