• 제목/요약/키워드: reproductive and developmental toxicity

검색결과 71건 처리시간 0.026초

환경성 내분비계장애물질(EDCs)의 우선관리순위 결정법 개발 및 적용 (Development and Application of a Chemical Ranking and Scoring System for the Management of Endocrine Disrupting Chemicals)

  • 임미영;박지영;지경희;이기영
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.76-89
    • /
    • 2018
  • Background: Exposure to endocrine disrupting chemicals (EDCs) has been considered one of the main causes of a range of endocrine diseases in modern society. An EDC priority list considering exposure, toxicity, and societal concern should be established for EDC management. Methods: The chemical ranking and scoring (CRS) system for EDCs was based on exposure, toxicity,and societal concern. The exposure score system was based on usage, circulation volume, bioaccumulation, and detection in consumer products. The toxicity score system was based on carcinogenicity and reproductive and developmental toxicity. The societal concern score system was based on domestic or international regulations and mass media reports. Results: A total of 165 EDCs were considered in the CRS system. The top-five priority EDCs were Bis(2-ethylhexyl) phthalate (DEHP), Benzene, Bisphenol A, Dibutyl phthalate (DBP) and Trichloroethylene. Phthalates, bisphenols and parabens were identified as priority chemical groups. Conclusion: We developed a CRS system for EDCs to identify priority EDCs for management. This will be a foundation to provide an EDC management plan based on scientific decision-making.

Disturbing Effects of Chronic Low-dose 4-Nonylphenol exposing on Gonadal Weight and Reproductive Outcome over One-generation

  • Cha, Sunyeong;Baek, Jeong Won;Ji, Hye Jin;Choi, Jun Hee;Kim, Chaelim;Lee, Min Young;Hwang, Yeon Jeong;Yang, Eunhyeok;Lee, Sung-Ho;Jung, Hyo-il;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권2호
    • /
    • pp.121-130
    • /
    • 2017
  • 4-Nonylphenol (NP) is a surfactant that is a well-known and widespread estrogenic endocrine disrupting chemical (EDC). Although it has been known that the affinity of NP to ERs is low, it has been suggested that low-dose NP has toxicity. In the present study, the endocrine disrupting effects on reproduction, and the weight of gonads, epididymis, and uterus were evaluated with the chronic lower-dose NP exposing. This study was designed by following the OECD test guideline 443 and subjected to a complete necropsy. In male, NP had an effect on the weight of the testis and epididymis in both $F_0$ and $F_1$. In females, NP decreased the weight of ovary and uterus in $F_0$ but not in pre-pubertal $F_1$ pubs. Fertility of male and female in $F_0$ or $F_1$ was no related with NP administration. The number of caudal-epididymal sperm by body weight (BW) was not different between groups in both $F_0$ and $F_1$. Besides, the difference of the sperm number between generations was not detected. The number of ovulated oocytes was similar between groups in $F_0$, but significantly decreased in NP 50 group of $F_1$. The litter size and sex ratios of offspring in $F_1$ and $F_2$ were not different. The accumulated mating rate and gestation period were not affected by the NP administration. Those results shows that chronic lower-dose NP administration has an effect of endocrine disruptor on the weight of gonads and epididymis of $F_0$ and $F_1$ but not in reproduction. Based on the results, it is suggested that chronic lower-dose NP exposing causes endocrine disruption in the weight of gonad and epididymis but not in the reproductive ability of next generations.

Sprague-Dawley 랫드를 이용한 수태능 및 초기배 발생시험의 기초자료연구 (Background Data for Fertility and Early Embryonic Development Study in Sprague-Dawley Rats)

  • 김종춘;이상준;서정은;차신우;김충용;한정희;정문구
    • Toxicological Research
    • /
    • 제18권2호
    • /
    • pp.167-174
    • /
    • 2002
  • Historical control data have been shown to be valuable in the proper interpretation and validation of reproductive toxicology studies. The present data were compiled from rat fertility and early embryonic development studies conducted at Korea Institute of Toxicology during the 1994∼2001 period. These data were assembled in order to provide background information for the general and reproductive data collected in 11 fertility and early embryonic development studies using Sprague-Dawley rats obtain-ing from the Breeding Facility, Korea Institute of Toxicology, Korea. A total of 274 males and 274 females were used in these studies during the eight-year period. Parameters of fertility and early embryonic development included clinical sign, body weights, food consumption, organ weights, estrus cycle, copulation index, precoital time, fertility index, pregnancy index, sperm parameters, and early embryonic development parameters. Most of the values were comparable to the previous historical control data reported by other investigators. These data can be wed not only as a historical data base for the meaningful interpretation of data from reproductive and developmental toxicity studies, but also as a contribution to biological characterization of Sprague-Dawley rats.

Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics

  • Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권1호
    • /
    • pp.1-17
    • /
    • 2020
  • Phthalates and those metabolites have long history in industry and suspected to have deficient effects in development and reproduction. These are well-known anti-androgenic chemicals and many studies have examined the effects of these compounds on male reproduction as toxins and endocrine disruptors. Uterus is a key organ for proper embryo development, successful reproduction, and health of eutherian mammals including women. To understand the effects of the phthalate, the horizontal approach with a whole group of phthalate is best but the known phthalates are huge and all is not uncovered. Di-(2-ethylhexyl) phthalate (DEHP) is the most common product of plasticizers in polymer products and studied many groups. Although, there is limited studies on the effects of phthalates on the female, a few studies have proved the endocrine disrupting characters of DEHP or phthalate mixture in female. An acute and high dose of DEHP has adverse effects on uterine histological characters. Recently, it has been revealed that a chronical low-dose exposing of DEHP works as endocrine disrupting chemicals (EDC). DEHP can induce various cellular responses including the expression regulation of steroid hormone receptors, transcription factors, and paracrine factors. Interestingly, the response of uterus to DEHP is not monotonous and the exposed female has various phenotypes in fertility. These suggest that the exposing of DEHP may causes of histological modification in uterus and of disease in female such as endometriosis, hyperplasia, and myoma in addition to developmental and reproductive toxicity.

냉동보존된 생쥐배아를 이용한 정도관리에 관한 연구 (Studies on Quality Control by Frozen-Thaw 2-Cell Mouse Embryos)

  • 한선남;김향미;정혜원;오승은;손영수;유한기;안정자;우복희
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제20권2호
    • /
    • pp.165-176
    • /
    • 1993
  • These studies were carried out to investigate the optimal freezing protocol for 2 cell mouse embryos and to find the probability of quality control with 2-cell embryos frozen. The embryos showed the best survival by the protocol composed of a freezing solution with the cryoprotectants(1.5M propanediol + 0.1M sucrose), and a 2-steop thawing method(room temperature, 20 sec-37$^{\circ}C$, 20 sec). The developmental ability of frozen-thaw 2-cell embryos did not differ from that of fresh 2-cell embryos in m-KRB medium with 0.4% bovine serum albumin. But development of frozen-thaw embryos was depended on the supplements of the medium. In the albumin-free medium, the developmental rate(rate of blastocysts) was significantly reduced, compared with that in the medium with 0.4% BSA. Also, when frozen-thaw embryos were cultured in the meduim with human fetal cord serum(HCS), the developmental rate of frozen-thaw embryos was sligtly reduced, compared with that of fresh 2-cell embryos. Finally, frozen-thaw 2-cell mouse embryos were more sensitive to the toxic agent of disposable-plastic syringe. Therefore, toxicity of medium could be effectively detected by frozen-thaw 2-cell mouse embryos.

  • PDF

Risk Assessment of Drometrizole, a Cosmetic Ingredient used as an Ultraviolet Light Absorber

  • Lee, Jae Kwon;Kim, Kyu-Bong;Lee, Jung Dae;Shin, Chan Young;Kwack, Seung Jun;Lee, Byung-Mu;Lee, Joo Young
    • Toxicological Research
    • /
    • 제35권2호
    • /
    • pp.119-129
    • /
    • 2019
  • As the use of cosmetics has greatly increased in a daily life, safety issues with cosmetic ingredients have drawn an attention. Drometrizole [2-(2'-hydroxy-5'-methylphenyl)benzotriazole] is categorized as a sunscreen ingredient and is used in cosmetics and non-cosmetics as a UV light absorber. No significant toxicity has been observed in acute oral, inhalation, or dermal toxicity studies. In a 13-week oral toxicity study in beagle dogs, No observed adverse effect level (NOAEL) was determined as 31.75 mg/kg bw/day in males and 34.6 mg/kg bw/day in females, based on increased serum alanine aminotransferase activity. Although drometrizole was negative for skin sensitization in two Magnusson-Kligman maximization tests in guinea pigs, there were two case reports of consumers presenting with allergic contact dermatitis. Drometrizole showed no teratogenicity in reproductive and developmental toxicity studies in which rats and mice were treated for 6 to 15 days of the gestation period. Ames tests showed that drometrizole was not mutagenic. A long-term carcinogenicity study using mice and rats showed no significant carcinogenic effect. A nail product containing 0.03% drometrizole was nonirritating, non-sensitizing and non-photosensitizing in a test with 147 human subjects. For risk assessment, the NOAEL chosen was 31.75 mg/kg bw/day in a 13-week oral toxicity study. Systemic exposure dosages were 0.27228 mg/kg bw/day and 1.90598 mg/kg bw/day for 1% and 7% drometrizole in cosmetics, respectively. Risk characterization studies demonstrated that when cosmetic products contain 1.0% of drometrizole, the margin of safety was greater than 100. Based on the risk assessment data, the MFDS revised the regulatory concentration of drometrizole from 7% to 1% in 2015. Under current regulation, drometrizole is considered to be safe for use in cosmetics. If new toxicological data are obtained in the future, the risk assessment should be carried out to update the appropriate guidelines.

Initial Risk Assessment of Acetanilide in OECD High Production Volume Chemical Program

  • Park, Hye-Youn;Park, Yoonho;Sanghwan Song;Kwon, Min-Jeoung;Koo, Hyun-Ju;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Toxicological Research
    • /
    • 제18권1호
    • /
    • pp.13-22
    • /
    • 2002
  • In Korea, 2,320 tonnes of acetanilide were mostly wed as intermediates for synthesis in phar-maceuticals or additives in synthesizing hydrogen peroxide, varnishes, polymers and rubber. Only small amount of 120 kg were wed as a stabilizer for hydrogen peroxide solution for hair colouring agents in 1998. Readily available environmental or human exposure data do not exist in Korea at the present time. However, potential human exposures from drinking water, food, ambient water and in work places are expected to be negligible because this chemical is produced in the closed system in only one company in Korea and the processing factory is equipped with local ventilation and air filtering system. Acetanilide could be distributed mainly to water based on EQC model. This substance is readily biodegradable and its bioaccumulation is low. Acute toxicity of acetanilide is low since the L $D_{50}$ of oral exposure in rats is 1,959 mg/kg bw. The chemical is not irritating to skin, but slightly irritating to the eyes of rabbits. horn repeated dose toxicity, the adverse effects in rats were red pulp hyperplasia of spleen, bone marrow hyperplasia of femur and decreased hemoglobin, hematocrit and mean corpuscular hemoglobin concentration. The LOAEL for repeated dose toxicity in rats was 22 mg/kg/day for both sexes. Acetanilide is not considered to be genotoxic. In a reproductive/developmental toxicity study, no treatment-related changes in precoital time and rate of copulation, impregnation, pregnancy were shown in all treated groups. The NOAELs for reproduction and developmental toxicity (off-spring toxicity) are considered to be 200 mg/kg bw/day and 67 mg/kg bw/day, respectively. Ecotoxicity data has been generated in a limited number of aquatic species of algae (72 hr- $E_{b}$ $C_{50}$; 13.5 mg/l), daphnid (48hr-E $C_{50}$ > 100 mg/l) and fish (Oryzias latipes, 96hr-L $C_{50}$; 100 mg/l). Form the acute toxicity values, the predicted no effect concentration (PNEC) of 0.135 mg/1 was derived win an assessment factor of 100. On the basis of these data, acetanilide was suggested as currently of low priority for further post-SIDS work in OECD.in OECD.D.

랫드에서 amitraz의 출생 전후 발생 시험 (Pre- and postnatal development study of amitraz in rats)

  • 김성환;임정현;박나형;문창종;박수현;강성수;배춘식;김성호;신동호;김종춘
    • 대한수의학회지
    • /
    • 제50권2호
    • /
    • pp.93-103
    • /
    • 2010
  • This study investigated the potential effects of amitraz on the pre- and postnatal development, behavior, and reproductive performance of offspring of parent rats given amitraz during pre-mating, gestation, and lactation. The test chemical was administered via the drinking water containing 0, 40, 120, and 360 ppm to male rats from 2 weeks before mating to the end of 14-day mating period and to females from 2 weeks before mating, throughout mating, gestation and lactation up to weaning. Based on fluid consumption, the male rats received an average of $0,\;5.7{\pm}1.33,\;13.2{\pm}2.08,$ and $35.8{\pm}3.42$ mg/kg/day amitraz, and the female rats received an average of $0,8.7{\pm}4.42,\;20.1{\pm}9.60,\;and\;47.6{\pm}22.38$ mg/kg/day amitraz, respectively. At 360 ppm, an increase in the incidence of abnormal clinical signs, a suppression in the body weight gain, a decrease in the food consumption and litter size, an increase in the post-implantation loss, and a decrease in the seminal vesicle weight were observed in the parent animals. In addition, a suppression in the body weight gain, a decrease in the grip strength, a delay in the negative geotaxis, an increase in the pre- and post-implantation loss, and a decrease in the number of live embryos were observed in the offspring. At 120 ppm, suppressed body weight gain and reduced food consumption were observed in the parent rats. Suppressed body weight gain and decreased grip strength were also observed in the offspring. There were no signs of either reproductive or developmental toxicity at 40 ppm. Under these experimental conditions, the no-observed-adverse-effect level of amitraz for parent rats and their offspring was estimated to be 40 ppm in rats.

Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model -

  • Gupta, Himanshu R;Patil, Yogesh;Singh, Dipty;Thakur, Mansee
    • 대한약침학회지
    • /
    • 제19권4호
    • /
    • pp.319-328
    • /
    • 2016
  • Objectives: Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos (Danio rerio). Methods: Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf ) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. Results: The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Conclusion: Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used in this study. The embryonic zebrafish model is recommended as a well-established method for rapidly assessing the toxicity of homeopathic drugs.

Environmental Chemical-Dioxin Impacts on Biological Systems: A Review

  • Vo, Thuy Thi Bich;Le, Binh Thi Nguyen;Nong, Hai Van;Yang, Hyun;Jeung, Eui-Bae
    • 한국수정란이식학회지
    • /
    • 제28권2호
    • /
    • pp.95-111
    • /
    • 2013
  • Worldwide there is concern about the continuing release of a broad range of environmental endocrine disrupting chemicals, including polychlorinated biphenyls, dioxins, phthalates, polybrominated diphenyl ethers (PBDEs), and other halogenated organochlorines persistent organic pollutants (POPs) into the environment. They are condemned for health adverse effects such as cancer, reproductive defects, neurobehavioral abnormalities, endocrine and immunological toxicity. These effects can be elicited via a number of mechanisms among others include disruption of endocrine system, oxidation stress and epigenetic. However, most of the mechanisms are not clear, thus several number of studies are ongoing trying to elucidate them in order to protect the public by reducing these adverse effects. In this review, we briefly limited review the process, the impacts, and the potential mechanisms of dioxin/dioxin like compound, particularly, their possible roles in adverse developmental and reproductive processes, diseases, and gene expression and associated molecular pathways in cells.