• 제목/요약/키워드: replacement excavation

검색결과 27건 처리시간 0.02초

수치영상을 이용한 토량환산계수 산정 (The Estimation of Soil Conversion Factor using Digital Imagery)

  • 이종출;차성렬;장호식;김진수
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 2003
  • Design of a rational earth volume conversion coefficient is required as the earth volume conversion coefficient may give great influence on construction work volume and construction costs in the civil engineering works where large-scaled earth volume is excavated. However, there are a great deal of difficulties in the calculation of the exact spoil surface earth and Insufficient earth volume by adopting the figures presented on the generally used design specifications which are not the results obtained from the selection tests in calculating the earth volume conversion coefficient. In this connection, it would be desirable to calculate the earth volume conversion coefficient by carrying out large-scaled site test adequate for the relevant environment. In consequence, this study aims at calculating the exact earth volume conversion coefficient of cutting and banking areas of weathering rocks in large-scaled construction sites where land is being developed into home lots. For this, we have excavated the respective 20 sites of the cutting and banking areas in the said site and then calculated the volume after the excavation. As a result, the relative exactness degree of the crossing was calculated at 0.5% in average. The relative exactness degree of 0.5% in the volume may be judged as an exact measurement as it corresponds to 0.17% of the relative exactness degree in the length measurement. We have calculated the exact earth volume conversion coefficient by the use of function ratio as per the wet unit weight and the indoor soil quality test as per volume calculated. And then we have found out minor differences as a result of the comparison and analysis with the earth volume conversion coefficient determined by the dry unit weight test as per sand replacement method. This may be judged as a rational design method for the calculation of earth volume conversion coefficient, as well as high reliability of site test as a precision photogrammetry is adopted for volume measurement of the irregular excavating areas.

  • PDF

격자지보와 숏크리트 복합구조체의 특성 실험 연구 (An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete)

  • 문홍득;백영식;배규진
    • 한국지반공학회지:지반
    • /
    • 제13권2호
    • /
    • pp.155-168
    • /
    • 1997
  • 격자지보는 NATM에서 터널굴착 후 곧바로 설치되는 강지보재의 한 종류로서 기존의 H형강 지보재를 대체하고자 유럽에서 개발된 새로운 종류의 지보재이다. 격자지보는 강봉을 삼각형태로 엮어 만들었기 때문에 숏크리트 타설이 용이하고 지보재 배면에 생기는 공동을 최소화 할 수 있는 장점이 있다. 또한 격자지보와 숏크리트 복합구조체는 결합력이 우수하여 일체화된 구조체로서 거동하기 때문에 지압을 효과적으로 지지할 수 있다. 본 연구에서는 격자지보와 숏크리트 복합구조체의 특성파악을 위해 실시한 모형벽체 시험, 모형벽체에 타설된 숏크리트의 강도특성시험, 격자지보와 숏크리트의 부착강도시험 결과를 제시하였다. 실험결과 숏크리트가 타설된 격자지보는 숏크리트가 타설된 H형강 지보재에 비해 숏크리 트 리바운드, 타설된 숏크리트의 강도, 부착특성 등이 우수한 것으로 판명되었고, 이로써 격자지로는 적절한 터널지보재로서의 역할을 할 것으로 판단되었다.

  • PDF

수치사진측량기법을 이용한 토량환산계수 산정 (The Estimation of Soil Conversion Factor Using Digital Photogrammetry)

  • 김진수;서동주;이종출
    • 한국측량학회지
    • /
    • 제22권4호
    • /
    • pp.339-347
    • /
    • 2004
  • 본 연구에서는 택지조성공사가 실시되고 있는 대규모 현장을 대상으로 절$.$성토부 풍화암의 정확한 토량환산 계수를 산정하고자 한다. 이를 위해, 먼저 대상지 내의 절 성토부 각각 20개소를 굴착하고 굴착 후의 체적을 계산하였다. 그 결과, 교차에 대한 체적의 상대정확도는 평균 0.5%로 산출되었다. 또한, 계산된 체적에 의한 습윤 단위중량과 실내토질시험에 의한 함수비를 이용하여 정확한 토량환산계수를 산정하였다. 산정된 토량환산계수를 모래치환법에 의한 건조단위중량시험에 의해 결정된 토량환산계수와 비교 $.$분석한 결과, 미소한 차이를 나타내었다. 이는 불규칙한 굴착부분의 체적측정을 정밀수치사진측량기법을 적용하였으므로 현장시험의 신뢰성이 높고 토량환산계수 산정을 위한 합리적인 설계방법이라 판단된다.

남해읍성의 공간구성과 축조기법에 관한 연구 (A Study on Techniques of the construction and Space Structure of Nam-hea city walls)

  • 권순강;이호열
    • 건축역사연구
    • /
    • 제18권5호
    • /
    • pp.59-80
    • /
    • 2009
  • The purpose of this study is to investigate the history, space structures, blueprint, and techniques of the construction of Nam-hea city walls. Nam-hea city walls were relocated in 1439 from Whagumhun-Sansung(火金峴山城) to the present site, nearby Nam-hea Um.(南海邑) The city walls were rebuilt after they were demolished during Japanese invasion on Korea in 1592 and their reconstruction was also done in 1757. At present, the city walls only partially remained due to the urbanization of the areas around them. A plane form of the City wall is a square, and the circumference os approximately 1.3km. According to the literature, the circumference of the castle walls is 2,876尺, the height is 13尺, and the width is 13尺 4寸. Hang-Kyo(鄕校). SaGikDan(社稷壇), YoeDan(厲壇), SunSo(船所) which is a harbor, as well as government and public offices such as Kaek-Sa(客舍) and Dong-Hun(東軒) existed inside the castle walls. Inside the castle walls were one well, five springs, one ditch, and one pond, and in the castle walls, four castle gates, three curved castle walls, and 590 battlements existed. The main government offices inside castle walls were composed of Kaek-Sa, Dong-Hun, and Han-Chung(鄕廳) their arrangements were as follows. Kaek-Sa was situated toward North. Dong-Hun was situated in the center of the west castle walls. The main roads were constructed to connect the North and South castle gate, and subsidiary roads were constructed to connect the East and West castle gate. The measurement used in the blueprint for castle wall was Pobaek-scale(布帛尺:1尺=46.66cm), and one side of it was 700尺. South and North gate were constructed in the center of South and North castle wall, and curved castle walls was situated there. One bastion was in the west of curved castle walls and two bastions were in the east of curved castle walls. The east gate was located in the five eighths of in the east castle wall. Two bastions were situated in the north, on bastion in the south, one bastion in the south, and four bastions in the west castle wall. The castle walls were constructed in the following order: construction of castle field, construction of castle foundation, construction of castle wall, and cover the castle foundation. The techniques used in the construction of the castle walls include timber pile(friction pile), replacement method by excavation.

  • PDF

지중매설관 손상 방지를 위한 콘크리트매트와 팽창매트의 지반보강효과에 관한 실험적 연구 (An Experimental Study on Ground Reinforcement Effect of Concrete and Expansion Mat for Prevention of Buried Pipe Damage)

  • 박정준;신희수;유중조;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제18권1호
    • /
    • pp.91-101
    • /
    • 2019
  • 최근 도심지내에서는 지반공동 복구공사, 관로교체 공사 등 생활의 편의성 확보를 위한 소규모 굴착공사가 이루어지고 있다. 본 연구에서는 지중매설관 하부의 미흡한 다짐관리로 인하여 부등침하가 발생할 경우, 관의 파손에 의한 피해를 저감하기 위해 관 하부를 보강할 수 있는 방안에 대하여 실험적 연구를 수행하였다. 즉, 콘크리트매트와 팽창매트를 이용한 매설관 주변지반의 보강효과에 관한 평판재하시험을 실시하였다. 실험결과, 콘크리트매트와 팽창매트 보강에 따른 지중응력 감소율은 재하하중 크기에 따라 각각 약 46%~48% 및 39%~42%로 분석되었다. 즉, 콘크리트매트와 팽창매트의 지반보강효과에 기인하여, 연구에 적용된 각각의 재료는 매설관의 침하 및 매설관 하부지반의 변형을 감소시키는 효과가 있는 것으로 판단되었다. 이를 바탕으로 지중매설관 하부지반 또는 매설관 사이의 지반에 콘크리트매트 및 팽창매트를 보강한다면, 지중에서 예측하기 어려운 공동발생 및 지반침하에 따른 매설관 손상을 다소 방지할 수 있는 것으로 평가되었다.

이수식 쉴드 TBM 배니곡관 마모 최소화를 위한 기초 연구 (A fundamental study on the minimize wear of slurry shield TBM sludge bend pipe)

  • 이수진;김현도;김용우;김상환
    • 한국터널지하공간학회 논문집
    • /
    • 제26권3호
    • /
    • pp.243-254
    • /
    • 2024
  • 현재 국내 지역의 산업 발달로 인해 주요 도심은 물론 주변 도시 지역에도 건축물이 포화 상태이다. 이에 따라 사람들의 관심은 지하공간으로 쏠리게 되었고, 특히 도시개발에 있어서 터널은 광범위하게 활용되고 있다. 이에 따라 터널 및 터널굴착공법에 대한 연구가 활발히 진행되고 있다. 그러나 이수식 쉴드 TBM 사용 시 슬러지 배출관의 마모 및 파손 문제에 대한 연구는 부족한 실정이다. 따라서 본 논문에서는 기존 슬러지 배출관에 사용된 L자형 곡관을 T자형 곡관으로 변형하여 슬러지를 이동시켰다. 그 결과, L자형 곡관에 비하여 T자형 곡관이 슬러지 배출 시 곡관에 미치는 영향이 감소하는 것을 확인할 수 있었다. 이러한 결과를 바탕으로 이수식 쉴드 TBM 장비 사용 시 T자형 곡관을 사용하면 슬러지 배출관의 마모를 최소화할 수 있을 것으로 기대된다. 이는 결국 터널 공사 시 곡관 교체나 추가 용접에 따른 비용을 절감하는 등 경제적 이익으로 이어질 것으로 기대된다.

중수기 및 발굴 자료로 본 상주 양진당의 배치에 관한 연구 (A Study on the Arrangements of YangjinDang in Sang-ju Foundation by Date on the Excavation and Jungsuki)

  • 김찬영;정명섭
    • 건축역사연구
    • /
    • 제20권4호
    • /
    • pp.61-80
    • /
    • 2011
  • This study estimated the prototype of Yangjindang at the time of its foundation by putting together the literature and discovered data and historical research on family related to Sangju Yangjindang, and looked at its architectural characteristics. These are summarized as follows: First, Yangjindang is an office building which was completed in three years [1629] after its start of construction when Keomgan Jojeong was at the age of 72 [1626] in his latter days and it was used for performing ancestral rites for Jojeong's forefathers of the head family of Pungyang Jo by family origin. Yangjindang was founded as a base of utopia for putting ancestral rites & commemoration, harmoniousness of a tribe, and educational idea into practice together with Ojakdang. Such a movement can be judged to interpret and apply the circumstances of the times realistically and flexibly where they tried to pursue the promotion of Confucianism & studies of the proprieties as well as the consciousness of practice, and to bring a tribe into harmony after the war through the retirement of Toegye School. Second, it is located at a topographically ideal spot on the edge of the Jangcheon-a tributary of Nakdong with a good physiology and landscape and its location was also the lot for a house of Jojeong's ancestor, which was burned down by war. Behind such a location and planning of Yangjindang, it is presumed, though not certain that it was modelled after Naeap village at Andong- Jojeong's parents-in-low's home. Third, as for its foundation size, it's a head house as much as about more than 100-kan, and its structure is composed of Samyo, Bonche, and Yangjindang. In addition, arrangements of buildings and its composition system and renovation procedures followed Chu-tzu Garyoe. Composition of Samyo can be restored to Yangjindang, Jugo, Woesammun, and Samyo; however, there has been no case of existence in case of Jugo building composition & arrangement takes on an aspect of a compromise between Gamyojido and Sandangjido of Garoe, which seems to be the result from flexibly interpreting and applying the rituals and studies of the proprieties of Toegye School in keeping with locational topography and realistic circumstances while making it a principle for them to observe by Toegye School. There exists a difference between Bonche and its counterpart of the upper class housing at Sangju district in that Bonche[main building] is a squre-shaped 'Ttuljip' typical of Andong setting a family ancestral ritual as a main function. Fourth, there existed a lot of hardships in raising money to cover repairs in time of doing repairs to this structure after 180 years since its establishment. In case of the repair work on Bonche, the level of renovation was limited to the replacement of old materials for rafters, doorpost, roof members and railings with new materials, together with partial alterations in case of window system. It is estimated that Yangjindang was renovated in 1808, and afterwards it was renamed Okryujeong after being re-built at another site. Through the repairs, the floor was expanded for the clan's meeting, and angle rafters and roof members were mended as well. Especially, the plane and structure of Okryujeong which was re-built at another site are expected to give clues to its restoration due to the resemblance to original appearance of Yangjindang at the time of its renovation in 1808.