• 제목/요약/키워드: repetitive control

검색결과 408건 처리시간 0.028초

A Digitally Controlled Three-Phase Cycloconverter Type High Frequency AC Link Inverter Using Space Vector Modulation

  • Sha, Deshang;Qin, Zian;Wu, Dan;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.28-36
    • /
    • 2011
  • In this paper, a three phase cycloconverter type high frequency AC link inverter is discussed. The configuration consists of a high frequency full-bridge inverter and a high frequency transformer followed by a three phase cycloconverter whose switch is composed of anti-series connected MOSFETs with a common source. A simple digital control strategy based on space vector modulation (SVM) and repetitive control for the cycloconverter is proposed although its input voltage is a high frequency AC pulse. The operation principle of the proposed control strategy is analyzed and the equivalent working modes during one interval are also presented. The effectiveness of the proposed control strategy is verified through Matlab/Simulink simulations and experiments on a 1.45kW prototype.

관상어로부터 분리한 Megalocytiviruses에서 나타나는 ORF25 유전자 부위의 반복서열 특성 분석 (Characterization of the Repetitive Sequences Present in the ORF25 Genomic Region of Megalocytiviruses from Ornamental Fishes)

  • 진지웅;남정희;김광일;홍수희;변주영;정현도
    • 한국수산과학회지
    • /
    • 제44권4호
    • /
    • pp.352-358
    • /
    • 2011
  • The presence of ISKNV-like viruses in various freshwater ornamental fish species imported from Asia was confirmed by polymerase chain reaction(PCR) amplification of the ATPase(adenosine triphosphatase) gene. Interestingly, molecular analyses of the Open Reading Frame 25(ORF25) region of these isolates based on the ISKNV(Infectious spleen and kidney necrosis virus) genome revealed the presence of various repetitive sequences. ORF25 repeat sequence length had no effect on cumulative mortality of rock bream Oplegnathus fasciatus challenged with tissue homogenates of infected pearl gourami, Trichogaster leeri; silver gourami, Trichogaster microlepis; blue gourami, or Trichogaster trichopterus. All isolates induce cumulative mortalities after 12 days of infection, confirming that ORF25 polymorphism did not affect the pathogenicity of ornamental fish megalocytiviruses that cross infect rock bream, a seawater fish. Also, no statistically significant differences in spleen index or viral copy number in infected tissues was detected between isolates with varying ORF25 repeat sequence lengths. However, further studies are necessary to fully characterize the functional characteristics of these polymorphisms in megalocytivirus disease in ornamental fishes.

줄기세포를 이식한 척수손상 흰쥐에서 반복자기자극의 효과 (The Effect of Repetitive Magnetic Stimulation in an SCI Rat Model with Stem Cell Transplantation)

  • 배영경;박해운;조윤우;김수정;이준하;권정구;안상호
    • The Journal of Korean Physical Therapy
    • /
    • 제22권1호
    • /
    • pp.67-73
    • /
    • 2010
  • Purpose: We tested whether repetitive transcranial magnetic stimulation (rTMS) improved recovery following spinal cord injury (SCI) in rats with transplantation of adipose tissue-derived stromal cells (ATSCs). Methods: Twenty Sprague-Dawley rats (200-250 g, female) were used. Moderate spinal cord injury was induced at the T9 level by a New York University (NYU) impactor. The rat ATSCs (approximately $5{\times}10^5$ cells) were injected into the perilesional area at 9 days after SCI. Starting four days after transplantation, rTMS (25 Hz, 0.1 Tesla, pulse width=$370{\mu}s$, on/off time=3 sec/3 sec) was applied daily for 7 weeks. Functional recovery was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale as well as pain responses for thermal and cold stimuli. Results: Both groups showed similar, gradual improvement of locomotor function. rTMS stimulation decreased thermal and cold hyperalgesia after 7 weeks, but sham stimulation did not. Conclusion: rTMS after transplantation of ATSCs in an SCI model may reduce thermal hyperalgesia and cold allodynia, and may be an adjuvant therapeutic tool for pain control after stem cell therapy in SCI.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • 전기전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어 (Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller)

  • 이성환;김국환;임성수;이순걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

The Persisted Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation to Augment Task-Specific Induced Hand Recovery Following Subacute Stroke: Extended Study

  • Tretriluxana, Jarugool;Thanakamchokchai, Jenjira;Jalayondeja, Chutima;Pakaprot, Narawut;Tretriluxana, Suradej
    • Annals of Rehabilitation Medicine
    • /
    • 제42권6호
    • /
    • pp.777-787
    • /
    • 2018
  • Objective To examine the long-term effects of the low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) combined with task-specific training on paretic hand function following subacute stroke. Methods Sixteen participants were randomly selected and grouped into two: the experimental group (real LF-rTMS) and the control group (sham LF-rTMS). All the 16 participants were then taken through a 1-hour task-specific training of the paretic hand. The corticospinal excitability (motor evoke potential [MEP] amplitude) of the non-lesioned hemisphere, and the paretic hand performance (Wolf Motor Function Test total movement time [WMFT-TMT]) were evaluated at baseline, after the LF-rTMS, immediately after task-specific training, 1 and 2 weeks after the training. Results Groups comparisons showed a significant difference in the MEP after LF-rTMS and after the training. Compared to the baseline, the MEP of the experimental group significantly decreased after LF-rTMS and after the training and that effect was maintained for 2 weeks. Group comparisons showed significant difference in WMFT-TMT after the training. Only in the experimental group, the WMFT-TMT of the can lifting item significantly reduced compared to the baseline and the effect was sustained for 2 weeks. Conclusion The results of this study established that the improvement in paretic hand after task-specific training was enhanced by LF-rTMS and it persisted for at least 2 weeks.

Modeling and stable startup strategy for strip-caster

  • Lee, Dukman;Lee, Jin S.;Kim, Y.H.;Lee, D.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.319-323
    • /
    • 1996
  • A new steel-making process, strip-casting, is introduced. The strip-casting is a new technique making the thin steel strip from the molten steel directly without resorting to repetitive reheating and hot-rolling required in a conventional steel-making method. This paper derives the mathematical model of strip caster, proposes a control strategy for stable startup operation and a fuzzy decision making rule for automatic control mode change in strip-casting process.

  • PDF

이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현 (Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot)

  • 임동철;국태용
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun;Hwang, Sung-Wook;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.

A Study on Development of Maintenance Skill Training Simulator for Railway Vehicle

  • Jung, NoGeon;Kim, BoSung;Lee, JaeBong;Lee, SangMoon;Koo, KyungWan;Kim, JaeMoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.113-116
    • /
    • 2015
  • Generally, in the railway vehicle the driving force of gravity happens by the high-speed running and the repetitive impulse cause the degradation and the malfunction phenomenon shows differently because the durability of each component changes according to the internal and external causes. The maintenance of propulsion control device which is played the very important role as to the stable service of the railway vehicle is greatly important among them. Therefore maintenance training propulsion control device simulator is needed to maximize learning through repetition and improve the maintenance practical skills training. This paper designed the railway vehicle running device with a miniature for the railway vehicle maintenance training and developed a propulsion control device simulator equipped the imitation steering wheel.