• Title/Summary/Keyword: repeated-batch culture

Search Result 38, Processing Time 0.022 seconds

Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates

  • Hesham, Abd El-Latif;Mostafa, Yasser S.;AlSharqi, Laila Essa Omar
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.122-132
    • /
    • 2020
  • Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ~52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 ℃, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 ℃ with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.

Ethanol Production by a New Method of Alginate-Immobilization (새로운 Alginate 고정화 방법에 의한 에탄올 생산)

  • Kim, Eun-Young;Kim, Seung-Wook;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.373-380
    • /
    • 1993
  • When the cells of yeast K35 were immobilized in Ca-alginate gel, cell concentration and viability decreased as alginate concentration increased. Considering the results, 2% (w/v) Ca-alginate concentration would be suitable. Among various concentrations of additives and cross-lin-king agent, the addition of 1.67% (w/v) of bentonite together with 0.33% (v/v) of glutaraldehyde (ABG bead) resulted in the highest ethanol production of 1.8%(w/v), using YPD medium containing 2% glucose. ABG bead seemed to be more resistant to phosphate ion than Ca-alginate bead. 0.33%(w/v) of phosphate was a proper concentration for the ethanol production by ABG bead. Scanning electron microscopic observation depicted that the immobilized cells on the bead surface were coated by alginate gel and that the cells in the internal bead were cross-linked with alginate matrix. When repeated-batch culture was performed with ABG bead for 40 days in a packed-bed reactor, ethanol concentration of about 90~110 g/l-gel was maintained. Cell viability was maintained around 70%, and outgrowing cell concentration was below 6.3% of total cell concentration. Consequently, the results showed that ABG head was a potential carrier for continuous production of ethanol compared to conventional Ca-alginate bead.

  • PDF

Screening and Characterization of Flocculent Yeast, Candida sp. HY200, for the Production of Xylitol from D-Xylose

  • KANG HEUI YUN;KIM YONG SUNG;KIM GEUN JOONG;SEO JIN HO;RYU YEON WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.362-367
    • /
    • 2005
  • On the basis of high osmotic tolerance and xylitol production, a novel yeast strain was screened from soils of rice farming. The isolated strain HY200 was systematically characterized by using general approaches of Biolog Microlog$^{TM}$ and 18S rRNA sequence analyses, and consequently was designated as Candida tropicalis HY200. Under formulated culture conditions, relatively high xylitol yield ($77\%$) and productivity (2.57 g/l$\codt$h) were obtained, in practice, when 200 g/l of xylose was supplemented. In the utilization of nitrogen, inorganic compounds could not serve as nitrogen sources. As a promising phenotype, HY200 steadily flocculated during and/or after growing in the formulated medium. The extent of flocculation was partly affected by nitrogen sources. However, regardless of the kinds of carbon source fed, the flocculent cells were always observed at the end of the exponential growth phase. These observations strongly suggest that the strain HY200 could effectively be used as a potential candidate for the production of xylitol from xylose, especially in repeated batch mode, because of its flocculation ability and tolerance to high substrate concentrations.

A Simple Method for the Preparation of Highly Pure Conjugated Linoleic Acid(CLA) Synthesized from Safflower Seed Oil

  • Kim, Young R.;Lee, Young H.;Park, Kyung A.;Kim, Jeong O.;Ha, Yeong L.
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.1
    • /
    • pp.10-14
    • /
    • 2000
  • A simple and rapid method was developed to prepare a large quantity of highly pure conjugated linoleic acid (CLA) chemically-synthesized from safflower seed oil (SSO). CLA-SSO(74.9% in purity) was synthesized from fresh SSO(79.9% of linoleic acid) by alkaline isomerization at 18$0^{\circ}C$. Urea(50g) and CLA-SSO (25g) were completely dissolved in ethanol (750ml) using a water bath(5$0^{\circ}C$) and followed by refluxing for 60 min. The resultant was cooled to room temperature and stored in a cold room (4$^{\circ}C$) for 24hrs. After removing the urea adduct by filtration, the filtrate was rotoevaporated under 4$0^{\circ}C$ and the residue was dissolved in hexane (200ml). The hexane extract was washed with distilled water (100ml$\times$3) and dried over sodium sulfate anhydrous. This urea treatment procedure was repeated three times. The purity of CLA recovered from the hexane extract was 95.0%. This method can be applied to prepare a large quantity of highly pure chemically-synthesized CLA (>0.5kg/a batch) from any plant oils containing high percentages (>70%) of linoleic acid.

  • PDF

Immobilization of the Hyperthermophilic Archaeon Thermococcus onnurineus Using Amine-coated Silica Material for H2 Production (아민기가 코팅된 규조토 담체를 이용한 초고온성 고세균 Thermococcus onnurineus의 세포 고정화 및 수소생산 연구)

  • Bae, Seung Seob;Na, Jeong Geol;Lee, Sung-Mok;Kang, Sung Gyun;Lee, Hyun Sook;Lee, Jung-Hyun;Kim, Tae Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.236-240
    • /
    • 2015
  • Previously we reported that the hyperthermophilic archaeon, Thermococcus onnurineus NA1 is capable of producing hydrogen (H2) from formate, CO or starch. In this study, we describe the immobilization of T. onnurineus NA1 as an alternative means of H2 production. Amine-coated silica particles were effective in immobilizing T. onnurineus NA1 by electrostatic interaction, showing a maximum cell adsorption capacity of 71.7 mg-dried cells per g of particle. In three cycles of repeated-batch cultivation using sodium formate as the sole energy source, immobilized cells showed reproducible H2 production with a considerable increase in the initial production rate from 2.3 to 4.0 mmol l−1 h−1, mainly due to the increase in the immobilized cell concentration as the batch culture was repeated. Thus, the immobilized-cell system of T. onnurineus NA1 was demonstrated to be feasible for H2 production. This study is the first example of immobilized cells of hyperthermophilic archaea being used for the production of H2.

The Secretion Optimization of Oligopeptide with His-Pro Repeats in Bacillus subtilis and Its Anti-Diabetic Effects (고초균에서 His-Pro 반복서열을 갖는 Oligopeptide의 분비 최적화 및 항당뇨 효과)

  • Jeong, Seon Hwa;Choi, Jang Won
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.71-82
    • /
    • 2017
  • To verify anti-diabetic effect of oligopeptide with His-Pro repeats (mHP peptide), the oligopeptide was first secreted and optimized using the secretion vector, pRBAS with alkaline protease gene promoter and the signal sequence in Bacillus subtilis and directly the anti-diabetic effect of the mHP peptide was investigated in insulinoma cell, RINm5F cell line. The oligopeptide gene was obtained by annealing oligonucleotides with repeated His-Pro sequence and finally was constructed as 18 dipeptides (108 bp and 4.0 kDa) coding gene, named oligopeptide with His-Pro repeats (mHP peptide) to make cyclo(His-Pro) known to be anti-diabetic effects. The region encoding the oligopeptide gene was subcloned into the pRBAS secretion vector (E.coli-Bacillus shuttle vector) after PCR amplification using the designed primers including initiation and termination codons and His tag, named pRBAS-mHP (6.56 kb). To optimize secretion of the oligopeptide, various culture conditions were investigated in Bacillus subtilis LKS. As a result, the secreted oligopeptide was maximally measured (approximately $59.6{\mu}g/mL$) in 3 L batch culture and the highest secretion was achieved at $30^{\circ}C$, PY medium, and carbon sources (particularly barley and glycerol). In the RINm5F cells treated with 2 mM STZ, the oligopeptide treatment (0.1 mg/mL) restored the cell viability (10%) and reduced the nitric oxide (NO) generation (35%) and DNA fragmentation (90%). And also, insulin secretion level was increased to 17% higher than in STZ-treated RINm5F cells. These results suggest that the oligopeptide with His-Pro repeats could be a candidate material for anti-diabetic agent against STZ-induced diabetes.

Fermentative Water Purification based on Bio-hydrogen (생물학적 수소 발효를 통한 수처리 시스템)

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.926-931
    • /
    • 2011
  • Among various techniques for hydrogen production from organic wastewater, a dark fermentation is considered to be the most feasible process due to the rapid hydrogen production rate. However, the main drawback of it is the low hydrogen production yield due to intermediate products such as organic acids. To improve the hydrogen production yield, a co-culture system of dark and photo fermentation bacteria was applied to this research. The maximum specific growth rate of R. sphaeroides was determined to be $2.93h^{-1}$ when acetic acid was used as a carbon source. It was quite high compared to that of using a mixture of volatile fatty acids (VFAs). Acetic acid was the most attractive to the cell growth of R. sphaeroides, however, not less efficient in the hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag-phase. There were distinguishable inflection points in the accumulation of hydrogen production graph that resulted from the dynamic production of VFAs or consumption of it by the interaction between the dark and photo fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was $15.9mL-H_2/L/h$, which was achievable in the sustainable hydrogen production.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF