Screening and Characterization of Flocculent Yeast, Candida sp. HY200, for the Production of Xylitol from D-Xylose

  • KANG HEUI YUN (Department of Molecular Science and Technology, College of Engineering, Ajou University) ;
  • KIM YONG SUNG (Department of Molecular Science and Technology, College of Engineering, Ajou University) ;
  • KIM GEUN JOONG (Institute of Biotechnological Industry, Inha University) ;
  • SEO JIN HO (Department of Agricultural Biotechnology, Seoul National University) ;
  • RYU YEON WOO (Department of Molecular Science and Technology, College of Engineering, Ajou University)
  • Published : 2005.04.01

Abstract

On the basis of high osmotic tolerance and xylitol production, a novel yeast strain was screened from soils of rice farming. The isolated strain HY200 was systematically characterized by using general approaches of Biolog Microlog$^{TM}$ and 18S rRNA sequence analyses, and consequently was designated as Candida tropicalis HY200. Under formulated culture conditions, relatively high xylitol yield ($77\%$) and productivity (2.57 g/l$\codt$h) were obtained, in practice, when 200 g/l of xylose was supplemented. In the utilization of nitrogen, inorganic compounds could not serve as nitrogen sources. As a promising phenotype, HY200 steadily flocculated during and/or after growing in the formulated medium. The extent of flocculation was partly affected by nitrogen sources. However, regardless of the kinds of carbon source fed, the flocculent cells were always observed at the end of the exponential growth phase. These observations strongly suggest that the strain HY200 could effectively be used as a potential candidate for the production of xylitol from xylose, especially in repeated batch mode, because of its flocculation ability and tolerance to high substrate concentrations.

Keywords

References

  1. Barbosa, M. F. S., M. B. de Medeiros, I. M. de Mancilha, H. Schneider, and H. Lee. 1988. Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guilliermondii. J. Ind. Microbiol. 3: 241-251 https://doi.org/10.1007/BF01569582
  2. Dominguez, J. M., C. S. Gong, and G. T. Tsao. 1997. Production of xylitol from D-xylose by Debayomyces hansenii. Appl. Biochem. Biotechnol. 63: 117- 127 https://doi.org/10.1007/BF02920418
  3. Du Preez, J. C., M. Bosch, and B. A. Prior. 1986. Xylose fermentation by Candida shehatae and Pichia stipitis: Effects of pH, temperature and substrate concentration. Enzyme Microb. Technol. 8: 360- 364 https://doi.org/10.1016/0141-0229(86)90136-5
  4. Emodi, A. 1978. Xylitol: Its properties and food applications. Food Techol. 32: 20- 32
  5. Furlan, S. A., P. Bouilloud, and H. F. Castro. 1994. Influence of oxygen on ethanol and xylitol production by xylose fermenting yeasts. Process Biochem. 29: 657- 662 https://doi.org/10.1016/0032-9592(94)80043-X
  6. Furlan, S. A., P. Bouilloud, P. Strehaiano, and J. P. Riba. 1991. Study of xylitol formation under oxygen limited conditions. Biotechnol. Lett. 13: 203- 206 https://doi.org/10.1007/BF01025818
  7. Gong, C. S., L. F. Chen, and G. T. Taso. 1981. Quantitative production of xylitol from D-xylose by high xylitol producing yeast mutant Candida tropicalis HXP2. Biotech. Lett. 3: 130-135
  8. Horitsu, H., Y. Yahashi, K. Takamizawa, K. Kawai, T. Suzuki, and N. Watanabe. 1992. Production of xylitol from D-xylose by Candida tropicalis: Optimization of production rate. Biotechnol. Bioeng. 40: 1085-1091 https://doi.org/10.1002/bit.260400912
  9. Hyvoenen, L., P. Koivistoinen, and F. Voirol. 1983. Food technological evaluation of xylitol. Adv. Food Res. 28: 373-403
  10. Ikeuchi, T., M. Azuma, J. Kato, and H. Ooshirna. 1999. Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioenerg. 16: 333- 339 https://doi.org/10.1016/S0961-9534(99)00005-7
  11. Jang, S. H., H. Y. Kang, G. J. Kim, J. H. Seo, and Y. W. Ryu. 2003. Complete in vitro conversion of D-xylose to xylitol by coupling xylose reductase and formate dehydrogenase. J. Microbiol. Biotechnol. 13: 501- 508
  12. Jeffries, T. W. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol. Bioeng. 24: 371- 384 https://doi.org/10.1002/bit.260240210
  13. Kim, M. S., Y. S. Chung, J. H. Seo, D. H. Jo, Y. H. Park, and Y. W. Ryu. 2001. High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis. J. Microbiol, Biotechnol. 11: 564- 569
  14. Kim, S. Y., J. H. Kim, and D. K. Oh. 1997. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J. Ferment. Bioeng. 83: 267- 270 https://doi.org/10.1016/S0922-338X(97)80990-7
  15. Kitpreechsvanich, V., M. Hayashi, N. Nishio, and S. Nagai. 1984. Conversion of D-xylose into xylitol by xylose reductase from Candida pelliculosa coupled with oxidoreductase system of methanogen strain HU. Biotechnol. Lett. 6: 651- 656 https://doi.org/10.1007/BF00133831
  16. Lee, J. H., Y. B. Lim, J. H. Koh, S. Y. Baig, and H. T. Shin. 2002. Screening of thermotolerant yeast for use as Microbiol feed additive. J. Microbiol. Biotechnol. 12: 162-165
  17. Lee, W. J., M. D. Kim, M. S. Yoo, Y. W. Ryu, and J. H. Seo. 2003. Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 725- 730
  18. Ligthelm, M. E., B. A. Prior, and J. C. du Preez. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-gucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63- 68 https://doi.org/10.1007/BF00250500
  19. Ligthelm, M. E., B. A. Prior, J. C du Preez, and V. Brandt. 1988. An investigation of $D-(1-^{13}C)$ xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl. Microhiol. Biotechnol. 28: 293- 296 https://doi.org/10.1007/BF00250458
  20. Lu, Jean, L. B. Tsai, C. S. Gong, and G. T. Tsao. 1995. Effect of nitrogen sources on xylitol production from D-xylose by Candida sp. L-102. Biotechnol. Lett. 17: 167-170 https://doi.org/10.1007/BF00127982
  21. Maekinen, K. K. 1979. Xylitol and oral health. Adv. Food Res. 25: 137- 158
  22. Nolleau, V., L. Preziosi-Belloy, J. P. Delgenes, and J. M. Navarro. 1993. Xylitol production from xylose by two yeast strains: Sugar tolerance. Curr. Microbiol. 27: 191- 197 https://doi.org/10.1007/BF01692875
  23. Oh, D. K. and S. Y. Kim. 1998. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl. Microbiol. Biotechnol. 50: 419- 425 https://doi.org/10.1007/s002530051314
  24. Roca, E., N. Meinander, and B. Hahn-Hagerdal, 1996. Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bead reactor. Biotechnol. Bioeng. 51: 317-326 https://doi.org/10.1002/(SICI)1097-0290(19960805)51:3<317::AID-BIT7>3.0.CO;2-G
  25. Roseiro, J. C., M. A. Peito, F. M. Girio, and M. AmaralCallaco. 1991. The effects of oxygen transfer coefficient and substrate concentration on xylose fermentation by Debarvomyces hansenii. Arch. Microbiol. 156: 484- 490
  26. Sirisansanneeyakul, S., M. Staniszewski, and M. Rizzi. 1995. Screening of yeasts for production of xylitol from D-xylose. J. Ferment. Bioeng. 80: 565- 570 https://doi.org/10.1016/0922-338X(96)87732-4
  27. Vandeska, E., S. Amartey, S. Kuzmanova, and T. W. Jeffries. 1995. Effects of environmental conditions on production of xylitol by Candida boidinii. World J. Microbiol. Biotechnol. 11: 213- 218 https://doi.org/10.1007/BF00704652
  28. Vongsuvalert, V. and Y. Tani. 1989. Xylitol production by a methanol yeast Candida boidinii (Kloekera sp.) No. 2201. J. Ferment. Bioeng. 67: 35- 39 https://doi.org/10.1016/0922-338X(89)90083-4
  29. Walther. T., P. Hensirisak, and F. A. Agblevor. 2001. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Biores. Technol. 76: 213-220 https://doi.org/10.1016/S0960-8524(00)00113-9
  30. Washuttle, J., P. Riederer, and E. Banchen. 1973. A qualitative and quantitative study of sugar-alcohols in several foods. J. Food Sci. 38: 1262
  31. Yahashi, Y., M. Hatsu, H. Horitsu, K. Kawai, T. Suzuki, and K. Takamizawa. 1996. D-Glucose feeding for improvement of xylitol productivity from D-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol. Lett. 18: 1395- 1400 https://doi.org/10.1007/BF00129342
  32. Ylikahri, R. 1979. Metabolic and nutritional aspects of xylitol. Adv. Food Res. 25: 159- 180