Browse > Article
http://dx.doi.org/10.4014/mbl.1506.06003

Immobilization of the Hyperthermophilic Archaeon Thermococcus onnurineus Using Amine-coated Silica Material for H2 Production  

Bae, Seung Seob (Korea Institute of Ocean Science and Technology)
Na, Jeong Geol (Korea Institute of Energy Research)
Lee, Sung-Mok (Korea Institute of Ocean Science and Technology)
Kang, Sung Gyun (Korea Institute of Ocean Science and Technology)
Lee, Hyun Sook (Korea Institute of Ocean Science and Technology)
Lee, Jung-Hyun (Korea Institute of Ocean Science and Technology)
Kim, Tae Wan (Korea Institute of Ocean Science and Technology)
Publication Information
Microbiology and Biotechnology Letters / v.43, no.3, 2015 , pp. 236-240 More about this Journal
Abstract
Previously we reported that the hyperthermophilic archaeon, Thermococcus onnurineus NA1 is capable of producing hydrogen (H2) from formate, CO or starch. In this study, we describe the immobilization of T. onnurineus NA1 as an alternative means of H2 production. Amine-coated silica particles were effective in immobilizing T. onnurineus NA1 by electrostatic interaction, showing a maximum cell adsorption capacity of 71.7 mg-dried cells per g of particle. In three cycles of repeated-batch cultivation using sodium formate as the sole energy source, immobilized cells showed reproducible H2 production with a considerable increase in the initial production rate from 2.3 to 4.0 mmol l−1 h−1, mainly due to the increase in the immobilized cell concentration as the batch culture was repeated. Thus, the immobilized-cell system of T. onnurineus NA1 was demonstrated to be feasible for H2 production. This study is the first example of immobilized cells of hyperthermophilic archaea being used for the production of H2.
Keywords
Amine-coated silica particle; cell immobilization; formate; $H_2$production; Thermococcus onnurineus NA1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kourkoutas Y, Bekatorou A, Banat IM, Marchantb R, Koutinasa AA. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377−397.   DOI
2 Kuyukina MS, Korshunova IO, Rubtsova EV, Ivshina IB. 2013. Methods of microorganism immobilization for dynamic atomicforce studies (review). Appl. Biochem. Microbiol. 50: 1−9.
3 Lim JK, Bae SS, Kim TW, Lee J, Lee HS, Kang SG. 2012. Thermodynamics of formate-oxidizing metabolism and implications for H2 production. Appl. Environ. Microbiol. 78: 7393−7397.   DOI
4 Santangelo TJ, Cuboňová L, Reeve JN. 2011. Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol. Microbiol. 81: 897−911.   DOI
5 Shin JH, Yoon JH, Lee SH, Park TH. 2010. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell. Bioresour. Technol. 101: s53−s58.   DOI
6 Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H. 2005. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl. Environ. Microbiol. 71: 6762−6768.   DOI
7 Bae SS, Kim TW, Lee HS, Kwon KK, Kim YJ, Kim MS, et al. 2012. H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol. Lett. 34: 75−79.   DOI
8 Brányik T, Vicente A, Oliveira R, Teixeira J. 2004. Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 88: 84−93.   DOI
9 Chang JH, Chang YK, Ryu HW, Chang HN. 2000. Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol. Lett. 182: 309−312.   DOI
10 Corpe WA. 1970. Attachment of marine bacteria to solid surfaces, pp. 73−87. In R. S. Manly (ed.), Adhesion in biological system, Academic Press, New York.
11 Guoqiang D, Kaul R, Mattiasson B. 1992. Immobilization of Lactobacillus casei cells to ceramic material pretreated with polyethylenimine. Appl. Microbiol. Biotechnol. 37: 305−310.   DOI
12 Klibanov AM. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241−246.   DOI
13 Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, et al. 2013. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl. Acad. Sci. 110: 5840−5845.   DOI
14 Kengen SWM, Stams AJM. 1994. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161: 168−175.   DOI
15 Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, et al. 2013. CO-dependent H2 producion by genetically engineered Thermococcus onnurineus NA1. Appl. Environ. Microbiol. 79: 2048−2053.   DOI
16 Albers S, Meyer BH. 2011. The archaeal cell envelope. Nat. Rev. Microbiol. 9: 414−426.   DOI
17 Aragão Börner R, Zaushitsyna O, Berillo D, Scaccia N, Mattiasson B, Kirsebom H. 2014. Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. Process Biochem. 49: 10−18.   DOI
18 Bae SS, Lee HS, Jeon JH, Lee J-H, Kang SG, Kim TW. 2015. Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1. Bioprocess Biosyst. Eng. 38: 989−993.   DOI