DOI QR코드

DOI QR Code

Fermentative Water Purification based on Bio-hydrogen

생물학적 수소 발효를 통한 수처리 시스템

  • Lee, Jung-Yeol (Department of Environmental Engineering, Kyungpook National University) ;
  • Chen, Xue-Jiao (Department of Environmental Engineering, Kyungpook National University) ;
  • Min, Kyung-Sok (Department of Environmental Engineering, Kyungpook National University)
  • 이정열 (경북대학교 환경공학과) ;
  • 진설교 (경북대학교 환경공학과) ;
  • 민경석 (경북대학교 환경공학과)
  • Received : 2011.11.02
  • Accepted : 2011.11.16
  • Published : 2011.11.30

Abstract

Among various techniques for hydrogen production from organic wastewater, a dark fermentation is considered to be the most feasible process due to the rapid hydrogen production rate. However, the main drawback of it is the low hydrogen production yield due to intermediate products such as organic acids. To improve the hydrogen production yield, a co-culture system of dark and photo fermentation bacteria was applied to this research. The maximum specific growth rate of R. sphaeroides was determined to be $2.93h^{-1}$ when acetic acid was used as a carbon source. It was quite high compared to that of using a mixture of volatile fatty acids (VFAs). Acetic acid was the most attractive to the cell growth of R. sphaeroides, however, not less efficient in the hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag-phase. There were distinguishable inflection points in the accumulation of hydrogen production graph that resulted from the dynamic production of VFAs or consumption of it by the interaction between the dark and photo fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was $15.9mL-H_2/L/h$, which was achievable in the sustainable hydrogen production.

유기성폐수의 혐기발효 공정은 빠른 수소생성속도를 나타내며, 동시에 수중의 유기물을 처리한다. 반면, 수소생성 수율이 낮고 처리 수 내 혐기발효 산물인 복합 유기산이 다량 존재하게 된다. 따라서, 본 실험에서는 수소생성 수율을 높이고 처리수의 수질 제고를 위해 광발효미생물을 이용하였다. 광발효미생물의 기질에 따른 수소생산 속도 및 미생물 성장율을 조사하기 위해 아세트산, 복합 유기산 (인공) 및 글루코스 대상 혐기발효 상등액을 각각 기질로 이용하는 회분식 실험을 실시하였다. 아세트산을 이용한 R. sphaeroides의 최대 비증식속도는 2.93 h로서 복합유기산을 이용할 때보다 높았다. 아세트산은 미생물 증식에 유리한 기질인 반면, 수소생산속도 면에서는 복합유기산보다 느리게 나타났다. 글루코스 혐기 발효액 상등액을 기질로 이용한 광발효에서 전단의 혐기발효를 통한 수소생산량의 약 50%가 추가로 발생하였다. 혐기 및 광발효미생물의 혼합발효 연속시스템을 통해 $15.9mL-H_2/L$의 안정적인 수소를 생산하였다.

Keywords

References

  1. Afgan, N. H. and Carvalho, M. G. (2004). Sustainability assessment of hydrogen energy systems. Int. J. Hydrog. Energy, 29(13), pp. 1327-1342. https://doi.org/10.1016/j.ijhydene.2004.01.005
  2. Alalayah, W. M., Kalil, M. S., Kadhum, A. A. H., Jahim, J. M., and Alauj, N. M. (2008). Hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Int. J. Hydrog. Energy, 33(24), pp. 7392-7396. https://doi.org/10.1016/j.ijhydene.2008.09.066
  3. APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC.
  4. Barbosa, M. J., Rocha, J. M. S., Tramper, J., and Wifjjels, R. H. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechnol., 85(1), pp. 25-33. https://doi.org/10.1016/S0168-1656(00)00368-0
  5. Brosseau, J. D. and Zajic, J. E. (1982). Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. J. Chem. Technol. Biot., 32(3), pp. 496-502.
  6. Demirel, B., Scherer, P., Yenigun, O., and Onay, T. T. (2010). Production of methane and hydrogen from biomass through conventional and high-rate anaerobic digestion processes. Cri. Rev. Env. Sci. Tec., 40(2), pp. 116-146. https://doi.org/10.1080/10643380802013415
  7. Fang, H. H. P., Zhu, H., and Zhang, T. (2006). Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobbacter sphaeroides. Int. J. Hydrog. Energy, 31(15), pp. 2223-2230. https://doi.org/10.1016/j.ijhydene.2006.03.005
  8. Fascetti, E., D'Addario, E. Todini, O., and Robertiello, A. (1998). Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int. J. Hydrog. Energy, 23(9), pp. 753-760.
  9. Kapdan, I. K. and Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzym. Microb. Technol., 38(5), pp. 569-582. https://doi.org/10.1016/j.enzmictec.2005.09.015
  10. Kraemer, J. T. and Bagley, D. M. (2007). Improving the yield from fermentative hydrogen production. Biotechnol. Lett., 29(5), pp. 685-695. https://doi.org/10.1007/s10529-006-9299-9
  11. Manish, S. and Banerjee, R. (2008). Comparison of biohydrogen production processes. Int. J. Hydrog. Energy, 33(1), pp. 279-286. https://doi.org/10.1016/j.ijhydene.2007.07.026
  12. Odom, J. M. and Wall, J. D. (1983). Photoproduction of $H_2$ from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol., 45(4), pp. 1300-1305.
  13. Shi, X. Y. and Yu, H. Q. (2006). Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata, Int. J. Hydrog. Energy, 31(12), pp. 1641-1647. https://doi.org/10.1016/j.ijhydene.2005.12.008
  14. Taguchi, F., Mizukami, N. Saito-Taki, T., and Hasegawa, K. (1995). Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No.2. Can. J. Microbiol., 41(6), pp. 536-540. https://doi.org/10.1139/m95-071
  15. van Andel, J. G., Zoutberg, G. R., Crabbendam, P. M., and Breure, A. M. (1985). Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol., 23(1), pp. 21-26. https://doi.org/10.1007/BF02660113
  16. Yokoi, H., Mori, S., Hirose, J., Hayashi, S., and Takasaki, Y. (1998). $H_2$ production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett., 20(9), pp. 895-899. https://doi.org/10.1023/A:1005327912678