• 제목/요약/키워드: repeated error

검색결과 254건 처리시간 0.024초

기구학적 분석을 이용한 로봇 매니퓰레이터 개발 (Development of the Robot Manipulator for Kinematies)

  • 민병로;이대원
    • 생물환경조절학회지
    • /
    • 제13권1호
    • /
    • pp.1-7
    • /
    • 2004
  • 본 연구는 오이수확기의 매니퓰레이터 개발을 위한 기구학적 분석을 하는 것이다. 매니퓰레이터의 정방향 기구학 및 역방향 기구학 분석을 한 후 실제 장치의 반복오차 측정실험을 통해 이론 값을 검증하였다. 매니퓰레이터는 총 세 개의 링크로서 한 개의 수직링크와 두 개의 호전링크로 구성되어져 있으며, 세 개의 스테핑 모터가 각 관절에 장착되어 링크에 동력을 전달한다. 주요 연구결과를 요약하면 다음과 같다. D-H Parameter를 이용하여 정방향 기구학에 의한 매리퓰레이터의 변환 연산자를 얻었다. 역방향 기구학의 해는 두가지로 나타났으며 삼각함수를 이용하여 해를 구하였다. 매리퓰레이터의 반복오차를 측정한 검증 실험에서는 X, Y, Z축에 대하여 반복 오차가 최대 2.60mm, 2.05mm, 1.55mm로 나타났으며, 정방향 및 역방향 기구학에서 오차의 최대지점 및 최소지점의 실제 좌표는 일치하였다. 반복오차 측정 결과는 매리퓰레이터의 목표지점인 오이의 직경에 비해 비교적 작게 나타났다. 측정오차는 실험중 발생한 실험오차로 판단된다. 매니퓰레이터의 오차를 줄이고 작업능률의 향상을 위해서는 링크의 수를 줄이고 오이의 품종 및 재배환경을 고려하여야 하며, 경량이면서도 견고한 재료를 사용하여 하중을 줄여야 한다.

참조패턴 기반의 2차원 변위 측정 방법론 (Measuring Methods for Two-dimensional Position Referring to the Target Pattern)

  • 정광석;이상헌;박성준
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

비동기 FH/MFSK 반복전송 시스템의 성능분석 (A Study on the Performance Analysis of Asynchronous Repeated FH/MFSK System)

  • 지영호;한영렬
    • 한국통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.120-126
    • /
    • 1988
  • 본 논문은 부호분할 다중통신을 위한 비동기 FH/MFSK(Frequency Hopping-Multilevel Frequency Shift Keying) 반복전송 시스템의 성능에 관한 연구이다. 잡음(Noise)과 페이딩(Multipath propagation)이 없고 사용자 상호간의 간섭(Interference)만 존재한다고 가정하고 사용자수 M이 주어졌을 때 실제상황을 모델로 하여 시뮬레이션(Simulation)하여 구한 간섭량과 Random Coding때의 간섭량과 비교하여 거의 차이가 없음을 보였다. 또한 비동기 FH/MFSK 반복전송 시스템의 Bound 형태로 표현된 워드 에러(Word error)확률의 식으로 계산한 값과 실제상황을 모델로 해서 시뮬레이션하여 나온 결과가 잘 일치하고 있음을 보였다.

  • PDF

주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계 (Design of a Croos-obstacle Neural network Controller using running error calibration)

  • 임신택;이필복;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.372-374
    • /
    • 2009
  • In this research, an obstacle avoidance method is proposed. The common usage of a robot is indoor and the obstacles to the indoor robot is studied. The accurate detection of direction after overcoming the obstacles is necessary for performance of autonomous navigation and mission project. The sensors such as Laser, Ultrasound, PSD can be used to measure the obstacles. In this research, a PSD sensor is used to detect obstacles. It detects the height and width of obstacles located on the floor. Before measuring the obstacles, a calibration of the sensor was done and it produced a better accuracy. We have plotted an error graph using data obtained from the repeated experiments. The graph is fitted to a polynomial curve. The polynomial equation is used for the robot navigation. And in this research, a model of the error of the direction of the robot after overcoming obstacles was obtained also. The prototype of the obstacle and the error of the direction after overcoming the obstacles are modelled using a neural networks. The input of the neural network composed with the height of the obstacles, the speed of robot, the direction of wheels and the error of the direction. To implement the suggested algorithm, we set up a robot which is operated by a notebook computer. Experiment showed the suggested algorithm performed well.

  • PDF

The Adverse Effect of Proprioceptive Sense in Head-Neck according to Smartphone Usage

  • Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • 제30권2호
    • /
    • pp.54-57
    • /
    • 2018
  • Purpose: Most studies have reported pain in the head-neck and upper-limbs according to smartphone usage, which is related to the proprioception sense in the head and neck, but there have been few studies. Therefore, the aim of this study was identify the adverse effects of the proprioceptive sense in the head-neck according to smartphone usage. Methods: Twenty-seven young adults (male: 9, female: 18) were enrolled in this study. The proprioceptive sense was measured through the joint reposition sense error and neural positon error in the head-neck during smartphone usage for 0, 5, and 20 minutes. The Noraxon MyoMotion system was used to record the joint position angle and neutral positon in the head-neck. One-way repeated ANOVA was used to identify the differences between the three smartphone use durations and the least-squares difference was used as a post hoc test. The data were analyzed using SPSS 18.0 software. Results: The joint reposition sense error and neural positon error in the head-neck were significantly different among the 0, 5, and 20 minutes of smartphone usage (p<0.05). In the post hoc test, the joint reposition sense error and neural positon error showed a significant difference between smartphone use for 0 minute and 5 minute, and between smartphone use for 0 minute and 20 minutes. Conclusion: This study suggests that smartphone use within 5 minutes can have adverse effects on the proprioceptive sense. Therefore, it is necessary to consider the appropriate use time and break time when using smart phones.

다중 자기센서를 이용한 실내 자기 지도 기반 보행자 위치 검출 정확도 향상 알고리즘 (Indoor Position Detection Algorithm Based on Multiple Magnetic Field Map Matching and Importance Weighting Method)

  • 김용훈;김응주;최민준;송진우
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.471-479
    • /
    • 2019
  • This research proposes a indoor magnetic map matching algorithm that improves the position accuracy by employing multiple magnetic sensors and probabilistic candidate weighting function. Since the magnetic field is easily distorted by the surrounding environment, the distorted magnetic field can be used for position mapping, and multiple sensor configuration is useful to improve mapping accuracy. Nevertheless, the position error is likely to increase because the external magnetic disturbances have repeated pattern in indoor environment and several points have similar magnetic field distortion characteristics. Those errors cause large position error, which reduces the accuracy of the position detection. In order to solve this problem, we propose a method to reduce the error using multiple sensors and likelihood boundaries that uses human walking characteristics. Also, to reduce the maximum position error, we propose an algorithm that weights according to their importance. We performed indoor walking tests to evaluate the performance of the algorithm and analyzed the position detection error rate and maximum distance error. From the results we can confirm that the accuracy of position detection is greatly improved.

상악 전치의 치열 형태에 따른 스캔 반복 측정 안정성 평가: in vitro 연구 (Evaluation of repeated measurement stability of dentition type of maxillary anterior tooth: an in vitro study)

  • 박동인;손호정;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제41권3호
    • /
    • pp.211-217
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the repeated measurement stability of scans related to dentition type. Methods: A normal model and the crowding and diastema models are also duplicated using duplicating silicon. After that, a plaster model is made using a plaster-type plaster on the duplicate mold, and each model is scanned 5 times by using an extraoral scanner. The gingival part and molar part were deleted from the 3D STL file data obtained through scanning. Using the 3D stl file obtained in this way, data is nested between model groups. Thereafter, RMS values obtained were compared and evaluated. The normality test of the data was performed for the statistical application of repeated measurements with dentition type, and the normality was satisfied. Therefore, the one-way ANOVA test, which is a parametric statistical method, was applied, and post-tests were processed by the Scheffe method. Results: The average size of each RMS in the Normal, Diastema, and Crowding groups was Normal> Crowding> Diastema. However, the standard deviation was in the order of Crowding> Normal> Diastema. The average value of each data is as follows. Diastema model was the smallest ($5.51{\pm}0.55{\mu}m$), followed by the crowding model ($12.30{\pm}2.50{\mu}m$). The normal model showed the maximum error ($13.23{\pm}1.06{\mu}m$). Conclusion: There was a statistically significant difference in the repeatability of the scanning measurements according to the dentition type. Therefore, you should be more careful when scanning the normal intense or crowded dentition than scanning the interdental lining. However, this error value was within the range of applicable errors for all clinical cases.