• 제목/요약/키워드: repeated batch culture

검색결과 38건 처리시간 0.035초

Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates

  • Hesham, Abd El-Latif;Mostafa, Yasser S.;AlSharqi, Laila Essa Omar
    • Mycobiology
    • /
    • 제48권2호
    • /
    • pp.122-132
    • /
    • 2020
  • Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ~52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 ℃, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 ℃ with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.

새로운 Alginate 고정화 방법에 의한 에탄올 생산 (Ethanol Production by a New Method of Alginate-Immobilization)

  • 김은영;김승욱;김근
    • 한국미생물·생명공학회지
    • /
    • 제21권4호
    • /
    • pp.373-380
    • /
    • 1993
  • When the cells of yeast K35 were immobilized in Ca-alginate gel, cell concentration and viability decreased as alginate concentration increased. Considering the results, 2% (w/v) Ca-alginate concentration would be suitable. Among various concentrations of additives and cross-lin-king agent, the addition of 1.67% (w/v) of bentonite together with 0.33% (v/v) of glutaraldehyde (ABG bead) resulted in the highest ethanol production of 1.8%(w/v), using YPD medium containing 2% glucose. ABG bead seemed to be more resistant to phosphate ion than Ca-alginate bead. 0.33%(w/v) of phosphate was a proper concentration for the ethanol production by ABG bead. Scanning electron microscopic observation depicted that the immobilized cells on the bead surface were coated by alginate gel and that the cells in the internal bead were cross-linked with alginate matrix. When repeated-batch culture was performed with ABG bead for 40 days in a packed-bed reactor, ethanol concentration of about 90~110 g/l-gel was maintained. Cell viability was maintained around 70%, and outgrowing cell concentration was below 6.3% of total cell concentration. Consequently, the results showed that ABG head was a potential carrier for continuous production of ethanol compared to conventional Ca-alginate bead.

  • PDF

Screening and Characterization of Flocculent Yeast, Candida sp. HY200, for the Production of Xylitol from D-Xylose

  • KANG HEUI YUN;KIM YONG SUNG;KIM GEUN JOONG;SEO JIN HO;RYU YEON WOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.362-367
    • /
    • 2005
  • On the basis of high osmotic tolerance and xylitol production, a novel yeast strain was screened from soils of rice farming. The isolated strain HY200 was systematically characterized by using general approaches of Biolog Microlog$^{TM}$ and 18S rRNA sequence analyses, and consequently was designated as Candida tropicalis HY200. Under formulated culture conditions, relatively high xylitol yield ($77\%$) and productivity (2.57 g/l$\codt$h) were obtained, in practice, when 200 g/l of xylose was supplemented. In the utilization of nitrogen, inorganic compounds could not serve as nitrogen sources. As a promising phenotype, HY200 steadily flocculated during and/or after growing in the formulated medium. The extent of flocculation was partly affected by nitrogen sources. However, regardless of the kinds of carbon source fed, the flocculent cells were always observed at the end of the exponential growth phase. These observations strongly suggest that the strain HY200 could effectively be used as a potential candidate for the production of xylitol from xylose, especially in repeated batch mode, because of its flocculation ability and tolerance to high substrate concentrations.

A Simple Method for the Preparation of Highly Pure Conjugated Linoleic Acid(CLA) Synthesized from Safflower Seed Oil

  • Kim, Young R.;Lee, Young H.;Park, Kyung A.;Kim, Jeong O.;Ha, Yeong L.
    • Preventive Nutrition and Food Science
    • /
    • 제5권1호
    • /
    • pp.10-14
    • /
    • 2000
  • A simple and rapid method was developed to prepare a large quantity of highly pure conjugated linoleic acid (CLA) chemically-synthesized from safflower seed oil (SSO). CLA-SSO(74.9% in purity) was synthesized from fresh SSO(79.9% of linoleic acid) by alkaline isomerization at 18$0^{\circ}C$. Urea(50g) and CLA-SSO (25g) were completely dissolved in ethanol (750ml) using a water bath(5$0^{\circ}C$) and followed by refluxing for 60 min. The resultant was cooled to room temperature and stored in a cold room (4$^{\circ}C$) for 24hrs. After removing the urea adduct by filtration, the filtrate was rotoevaporated under 4$0^{\circ}C$ and the residue was dissolved in hexane (200ml). The hexane extract was washed with distilled water (100ml$\times$3) and dried over sodium sulfate anhydrous. This urea treatment procedure was repeated three times. The purity of CLA recovered from the hexane extract was 95.0%. This method can be applied to prepare a large quantity of highly pure chemically-synthesized CLA (>0.5kg/a batch) from any plant oils containing high percentages (>70%) of linoleic acid.

  • PDF

아민기가 코팅된 규조토 담체를 이용한 초고온성 고세균 Thermococcus onnurineus의 세포 고정화 및 수소생산 연구 (Immobilization of the Hyperthermophilic Archaeon Thermococcus onnurineus Using Amine-coated Silica Material for H2 Production)

  • 배승섭;나정걸;이성목;강성균;이현숙;이정현;김태완
    • 한국미생물·생명공학회지
    • /
    • 제43권3호
    • /
    • pp.236-240
    • /
    • 2015
  • 초고온성 고세균 Thermococcus onnurineus NA1은 개미산, 일산화탄소, 또는 전분 등을 이용해서 수소를 생산하는 것으로 알려져 있다. 본 연구에서는 T. onnurineus NA1의 고정화 세포를 이용한 수소생산을 고찰하였다. 고정화 실험결과, T. onnurineus NA1은 표면에 아민기가 코팅된 규조토 담체에 정전기적 인력에 의해 효과적으로 고정화되었고, 1 g의 담체에 고정화 될 수 있는 최대 세포의 양은 71.7 mg-dcw로 확인되었다. 고정화 세포를 이용한 세 번의 반복회분식 배양을 통해 개미산으로부터 수소생산 특성을 고찰하였고, 그 결과 배양이 반복됨에 따라 고정화 세포 농도의 증가에 기인하여 초기수소생산속도가 2.3 에서 4.0 mmol l−1 h−1로 상당량 증가됨이 관찰되었다. 따라서, T. onnurineus NA1의 고정화세포 시스템은 수소생산을 위한 좋은 대안이 될 수 있을 것으로 사료된다. 본 연구는 초고온성 고세균의 고정화세포를 수소생산에 적용한 첫 번째 사례이다.

고초균에서 His-Pro 반복서열을 갖는 Oligopeptide의 분비 최적화 및 항당뇨 효과 (The Secretion Optimization of Oligopeptide with His-Pro Repeats in Bacillus subtilis and Its Anti-Diabetic Effects)

  • 정선화;최장원
    • KSBB Journal
    • /
    • 제32권1호
    • /
    • pp.71-82
    • /
    • 2017
  • To verify anti-diabetic effect of oligopeptide with His-Pro repeats (mHP peptide), the oligopeptide was first secreted and optimized using the secretion vector, pRBAS with alkaline protease gene promoter and the signal sequence in Bacillus subtilis and directly the anti-diabetic effect of the mHP peptide was investigated in insulinoma cell, RINm5F cell line. The oligopeptide gene was obtained by annealing oligonucleotides with repeated His-Pro sequence and finally was constructed as 18 dipeptides (108 bp and 4.0 kDa) coding gene, named oligopeptide with His-Pro repeats (mHP peptide) to make cyclo(His-Pro) known to be anti-diabetic effects. The region encoding the oligopeptide gene was subcloned into the pRBAS secretion vector (E.coli-Bacillus shuttle vector) after PCR amplification using the designed primers including initiation and termination codons and His tag, named pRBAS-mHP (6.56 kb). To optimize secretion of the oligopeptide, various culture conditions were investigated in Bacillus subtilis LKS. As a result, the secreted oligopeptide was maximally measured (approximately $59.6{\mu}g/mL$) in 3 L batch culture and the highest secretion was achieved at $30^{\circ}C$, PY medium, and carbon sources (particularly barley and glycerol). In the RINm5F cells treated with 2 mM STZ, the oligopeptide treatment (0.1 mg/mL) restored the cell viability (10%) and reduced the nitric oxide (NO) generation (35%) and DNA fragmentation (90%). And also, insulin secretion level was increased to 17% higher than in STZ-treated RINm5F cells. These results suggest that the oligopeptide with His-Pro repeats could be a candidate material for anti-diabetic agent against STZ-induced diabetes.

생물학적 수소 발효를 통한 수처리 시스템 (Fermentative Water Purification based on Bio-hydrogen)

  • 이정열;진설교;민경석
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.926-931
    • /
    • 2011
  • 유기성폐수의 혐기발효 공정은 빠른 수소생성속도를 나타내며, 동시에 수중의 유기물을 처리한다. 반면, 수소생성 수율이 낮고 처리 수 내 혐기발효 산물인 복합 유기산이 다량 존재하게 된다. 따라서, 본 실험에서는 수소생성 수율을 높이고 처리수의 수질 제고를 위해 광발효미생물을 이용하였다. 광발효미생물의 기질에 따른 수소생산 속도 및 미생물 성장율을 조사하기 위해 아세트산, 복합 유기산 (인공) 및 글루코스 대상 혐기발효 상등액을 각각 기질로 이용하는 회분식 실험을 실시하였다. 아세트산을 이용한 R. sphaeroides의 최대 비증식속도는 2.93 h로서 복합유기산을 이용할 때보다 높았다. 아세트산은 미생물 증식에 유리한 기질인 반면, 수소생산속도 면에서는 복합유기산보다 느리게 나타났다. 글루코스 혐기 발효액 상등액을 기질로 이용한 광발효에서 전단의 혐기발효를 통한 수소생산량의 약 50%가 추가로 발생하였다. 혐기 및 광발효미생물의 혼합발효 연속시스템을 통해 $15.9mL-H_2/L$의 안정적인 수소를 생산하였다.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF