• 제목/요약/키워드: renewable energy sources

검색결과 699건 처리시간 0.022초

스마트그리드를 위한 신재생에너지원과 하이브리드시스템 모델링 (Renewable Source and Hybrid System Modeling for Smart Grid)

  • 조재훈;홍원표;전명근
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.109-121
    • /
    • 2010
  • Recently, smart grid for solving energy problems have been receiving growing attention. Also, renewable energy sources such as photovoltaic and fuel cell as future energy for realizing smart grid have been widely studied. On the other hand, hybrid structures have been proposed since the output power of these renewable energy sources is usually dependent on weather conditions. This paper proposes a hybrid system involving a proper photovoltaic in the hybrid system, Polymer Elecrolyte Membrane Fuel Cell with water electrolyzer and ultracapacitor. The results of simulation and output of the proposed model are established and analysed by Matlab/Simulink and SimPowerSystems.

독립형 마이크로그리드에서 신재생에너지 최적구성 알고리즘에 관한 연구 (A Study on Optimal Hybrid-Renewable Energy Configuration of Islanded Microgrids)

  • 우상민;이성훈;곽형근;김성열;손현일;김진오
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.511-515
    • /
    • 2012
  • At the moment, with an interest in renewable energy sources (RES) that continue to grow its penetration will be expected to considerably increase in the future power system. However, this penetration of RES leads to new challenges to be solved in electric power systems. In this paper, optimal configuration of renewable energy resources and operation strategy is presented. By using this methodology for allocation of the optimal sizes and types, system operational efficiency and stability of the microgrid will be maximized.

  • PDF

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

Comparison of Dynamic Characteristics between Virtual Synchronous Machines Adopting Different Active Power Droop Controls

  • Yuan, Chang;Liu, Chang;Zhang, Xueyin;Zhao, Tianyang;Xiao, Xiangning;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.766-776
    • /
    • 2017
  • In modern power systems, high penetration of distributed generators (DGs) results in high stress on system stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method named virtual synchronous machine (VSM) was proposed, which brought new characteristics to inverters such as synchronous machines (SMs). In addition, different active power droop controls for VSMs are being proposed in literatures. However, they are quite different in terms of their dynamic characteristics despite of the similar control laws. In this paper, mathematical models of a VSM adopting different active power droop controls are built and analyzed. The dynamic performance of the VSM output active power and virtual rotor angular frequency are presented for different models. The influences of the damping factor and droop coefficient on the VSM dynamic behaviors are also investigated in detail. Finally, the theoretical analysis is verified by simulations and experimental results.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

지니계수를 이용한 시군구별 신재생에너지 자원의 불균등성 분석 (Analysis of the Regional Inequalities of Renewable Energy Resources using Gini's Coefficients)

  • 이지민
    • 농촌계획
    • /
    • 제22권2호
    • /
    • pp.109-119
    • /
    • 2016
  • Most of countries are trying to increase the supply of renewable energy as the substitute of the fossil energy for reducing greenhouse gas emissions. However, renewable energy sources account for only about 3.86% of the total Korea primary energy supply. To increase the rate of renewable energy in Korea's energy consumption, various policies for expanding the use of renewable energy should be applied. Also these policies should be consider renewable energy resources distribution and regional inequality. In this study, the potentials of photovoltaic, wind power and bioenergy from rice straw, livestock waste and food waste are calculated and the distribution characteristic and regional inequalities are analyzed using Gini's coefficient and Gini decomposition method. As the results, technical potentials of photovoltaic and wind power of city region(Gu) has more potential rate than theoretical potentials. Livestock waste has the most unequal distribution (Gini's coefficient: 0.617) among renewable resources.

A Probabilistic Approach to Small Signal Stability Analysis of Power Systems with Correlated Wind Sources

  • Yue, Hao;Li, Gengyin;Zhou, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1605-1614
    • /
    • 2013
  • This paper presents a probabilistic methodology for small signal stability analysis of power system with correlated wind sources. The approach considers not only the stochastic characteristics of wind speeds which are treated as random variables with Weibull distributions, while also the wind speed spatial correlations which are characterized by a correlation matrix. The approach based on the 2m+1 point estimate method and Cornish Fisher expansion, the orthogonal transformation technique is used to deal with the correlation of wind farms. A case study is carried out on IEEE New England system and the probabilistic indexes for eigenvalue analysis are computed from the statistical processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed by comparing with the results of Monte Carlo simulation. The numerical results indicate that the proposed method can actually capture the probabilistic characteristics of mode properties of the power systems with correlated wind sources and the consideration of spatial correlation has influence on the probability of system small signal stability.

Active Distribution System Planning for Low-carbon Objective using Cuckoo Search Algorithm

  • Zeng, Bo;Zhang, Jianhua;Zhang, Yuying;Yang, Xu;Dong, Jun;Liu, Wenxia
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.433-440
    • /
    • 2014
  • In this study, a method for the low-carbon active distribution system (ADS) planning is proposed. It takes into account the impacts of both network capacity and demand correlation to the renewable energy accommodation, and incorporates demand response (DR) as an available resource in the ADS planning. The problem is formulated as a mixed integer nonlinear programming model, whereby the optimal allocation of renewable energy sources and the design of DR contract (i.e. payment incentives and default penalties) are determined simultaneously, in order to achieve the minimization of total cost and $CO_2$ emissions subjected to the system constraints. The uncertainties that involved are also considered by using the scenario synthesis method with the improved Taguchi's orthogonal array testing for reducing information redundancy. A novel cuckoo search (CS) is applied for the planning optimization. The case study results confirm the effectiveness and superiority of the proposed method.

지능형 에너지 저장시스템과 ESS 개발을 위한 소재 및 공정 기술 (Intelligent Energy Harvesting Power Management and Advanced Energy Storage System)

  • 허관준;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.417-427
    • /
    • 2014
  • Renewable energy sources such as solar, wind and hydro provides utilizing renewable power and reduce the using fossil fuels. On the other hand, it is too critical to apply power system due to the intermittent nature of renewable energy sources, the continuous fluctuations of the power load, and the storage with high energy density. Energy storage system, including pumped-hydroelectric energy storage, compressed-air energy storage, superconducting magnetic energy storage, and electrochemical devices like batteries, supercapacitors and others have shown that solve some of the challenges. In this paper, we review the current state of applications of energy storage systems, and atomic layer deposition technology, graphene materials on the energy storage systems and processes.

플러스에너지하우스 설계 및 에너지 성능 평가 (Design and Energy Performance Evaluation of Plus Energy House)

  • 김민휘;임희원;신우철;김효중;김현기;김종규
    • 한국태양에너지학회 논문집
    • /
    • 제38권2호
    • /
    • pp.55-66
    • /
    • 2018
  • South Korea aims to shift the 20 percent of electricity supplement from the fossil fuel including the nuclear to renewable energy systems by 2030. In order to realize this agenda in the buildings, the plus energy house is necessary to increase the renewable energy supplement beyond the zero energy house. This paper suggested KePSH (KIER Energy-Plus Solar House) and energy performance of house and renewable energy systems was investigated. The KePSH has the target of generating 40% surplus energy than the conventional house energy consumption. The plus energy house is the house that generates surplus energy from the renewable energy sources than that consumes. In order to minimize the cooling and heating load of the house, the shape design and passive parameters design were conducted. Based on the experimental data of the plug load in the typical house, the total energy consumption of the house was estimated. This paper also suggested renewable energy sources integrated HVAC system using air-source heat pump system. Two cases of renewable energy system integration methods were suggested, and energy performance of the cases was investigated using TRNSYS 17 program. The results showed that the BIPV (building integrated photovoltaic) system (i.e., CASE 1) and BIPV and BIST system (i.e., CASE 2) shows 42% and 29% of plus energy rate, respectivey. Also, CASE 1 can generate 59% more surplus energy compared with the CASE 2 under the same installation area.