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MPC-based Two-stage Rolling Power Dispatch Approach for 
Wind-integrated Power System

Junyi Zhai*, Ming Zhou†, Shengxiao Dong*, Gengyin Li* and Jianwen Ren*

Abstract – Regarding the fact that wind power forecast accuracy is gradually improved as time is 
approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive 
control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point 
tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and 
the real-time rolling scheme is based on MPC which includes the leading rolling optimization and 
lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, 
the closed-loop optimization is formed to correct the power deviation timely, making the unit output 
smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. 
We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing 
prediction precision as well as the power dispatcher’s rising expected satisfaction degree with reliable 
system operation, we set the confidence level of reserve constraints at different timescales as the 
incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of 
the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate 
the effectiveness of the proposed approach.

Keywords: Two stage rolling power dispatch, Model predictive control, Wind power accommodation, 
Expectation of reserve shortage

1. Introduction

Wind power generation is variable in nature due to the 
variability of wind speed. Grid integration of this variable 
power in increasing capacity raises concern about its 
impact on the economy and reliability of the power system 
operation. Owing to the stochastic fluctuation and weak 
controllability of wind power, high penetration of wind 
power makes the power system dispatch more complicated. 
To keep reliable operation of the system with the high wind 
power penetration, more regulation capacity, generally 
undertaken by thermal units, has to be reserved. In this 
regard, reliability and economy of the system operation are 
somewhat conflicting, so how to coordinate generation and 
reserve of thermal units in a large scale wind power 
integrated system is a challenge. 

To accommodate more wind power, the effective 
prediction is a prerequisite to model wind power variability. 
However, it is well acknowledged that the prediction 
precision of wind power is far lower than load forecast, 
especially long-term forecast, which may result in unfeasible
day-ahead dispatch scheme. So the rolling dispatch approach 
consisting of day-ahead unit commitment (UC) and the 

intra-day rolling dispatch, is an effective solution since 
wind power prediction accuracy improves with time. In 
order to better accommodate wind power, how to design 
the rolling dispatch strategy is the key issue for the wind-
integrated power system. 

The uncertainty of wind power is a major challenge in 
the power system dispatch and accurate forecast is hard to 
achieve. Stochastic programming and robust optimization 
have been the most popular methods to handle wind power 
uncertainty in the UC problem. Given the probability 
distribution of wind power, UC can be formulated as a 
stochastic programming problem [1, 2]. The Gaussian 
distribution is also eligible to describe wind power forecast 
errors [3, 4]. For the security-constrained unit commitment 
(SCUC), multiple stochastic scenarios methods are proposed
to describe the intermittency and volatility of wind power 
in Refs. [5]. Given the bounded uncertain dataset of various
parameters, the optimal solution of robust optimization can 
satisfy all the constraints from this dataset, and it requires 
less knowledge about the uncertainty parameters [6]. 

Moreover, due to the uncertainty and weak controllability
of wind power, the traditional reserve determination method, 
that is to take a certain percentage of load or the biggest 
committed unit’s capacity [7], is no longer suitable. In Refs. 
[8], a hierarchical UC is presented to dispatch generation 
reserve, ramping reserve and transmission reserve, where 
normal and emergent operations are considered, and wind 
power is divided into two intervals based on confidence 
level, each interval is corresponding to different dispatch 
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strategies. In Refs. [9], the selection of spinning and non-
spinning reserves is discussed through a market-clearing 
model. These researches are limited to a particular timescale; 
therefore the impact of wind power uncertainty on power 
dispatch at multi-time scales are not adequately addressed. 

The average wind power forecast error is approximately 
10% for the hour-ahead forecast, 15% for the 12-hour-
ahead forecast, and even higher for a longer leading time 
[10]. Hence, it is essential to make rolling power dispatch 
schemes. In Refs. [11], the slow-response generation is 
scheduled at hourly timescale, while fast-response 
generation resources, including wind power, are scheduled 
at a sub-hour timescale. A rolling decision-making process 
is proposed in Refs. [12], where generation and reserve are 
co-optimized to minimize expected short-run operating 
cost. Based on the rolling coordination approach, a multi-
temporal scale rolling-coordinated economic dispatch (ED) 
is presented in Refs. [13], to reduce the impact of ultra-
short-term forecast errors on UC. Bao et al [14] established
a day-ahead scheduling and real-time dispatch model to 
follow the uncertainty of renewable energy in microgrid. 
These power dispatch models mentioned above have 
employed a technique by refining the timescales to 
gradually accommodate wind power uncertainty, which is 
based on the characteristics that prediction precision is 
rising as the forecast horizon shortens. 

Model predictive control (MPC) is a model-based finite-
time closed-loop control method that has been widely used 
in the process industries. Compared to the open-loop 
optimal algorithm, MPC has stronger robustness, which is 
very suitable to deal with significant uncertainty. In Refs. 
[15] the application of nonlinear MPC in industry control 
process is performed. In Refs. [16], the MPC-based 
dynamic scheduling problem has been solved, verifying 
its better robustness in dealing with disturbance and 
uncertainties. Voltage regulation control strategy is analyzed
in Refs. [17] where the traditional static voltage control 
strategy is replaced by the MPC-based optimization 
strategy. In Refs. [18], the MPC-based energy management 
system of distribution network with distributed generation 
is studied. In Refs. [19], MPC is introduced into the active 
power dispatch and control. Combined with the hierarchical
control theory of large system, the hierarchical MPC method
was proposed in Refs. [20] to optimize active power flow 
of wind power integrated power system. Till now, to the 
authors’ knowledge, there is no research on MPC for the 
SCUC problem of wind power integrated power system.

The contributions of this paper are summarized as 
follows.

(1) MPC-based two-stage rolling power dispatch model 
is proposed which contains an intra-day rolling optimal 
scheme and a real-time rolling base point tracing scheme. 
The intra-day rolling scheme relies on the traditional open-
loop optimal control algorithm to provide the thermal unit 
reference output for the real-time rolling scheme. Different 
from the traditional static real-time dispatch approach for a 

single time period, this real-time rolling base point tracing 
scheme is based on MPC which includes the leading rolling 
optimization and lagging feedback correction strategy to 
pursue the optimal performance in a future time window. 
On the basis of the latest measured thermal unit output 
feedback, the closed-loop optimization is formed to correct 
the power deviation timely, making the unit output smoother
and reducing the costs of power adjustment. Therefore, 
multi-level coordination, gradual refinement and feedback 
correction can be brought together to deal with wind power 
fluctuation.

(2) Based on the occurrence probabilities of different 
power shortage, two indicators (EURS and EDRS) are 
proposed to assess the adequacy of upward and downward 
reserve. And the confidence level of reserve constraints at 
different timescales is set as the incremental vector to 
reflect the rising prediction precision and dispatcher’s ever-
rising expected satisfaction degree with the reliable system 
operation.

2. Two-stage Rolling Optimization Framework 

2.1 Model assumptions

This MPC-based two-stage rolling power dispatch 
approach is based on the following assumptions.

(1) On-off states of the slow response thermal units have 
been scheduled in the day-ahead UC. This paper only 
focuses on the intra-day and real-time power dispatch 
schemes.

(2) The latest measured thermal unit output information 
is introduced to the MPC-based real-time rolling scheduling
stage. It should be pointed out that it is feasible to collect 
the latest measured thermal unit output data and upload it 
to the power dispatch center.

(3) The forecast errors of load and wind power at 
different forecasting horizons are assumed to follow Gaussian
distribution with zero mean and heteroscedasticity.

2.2 Rolling power dispatch framework

In this paper, the day-ahead and two-stage rolling power 
dispatch decisions are taken in an integrated manner. This 
means that the day-ahead schedule takes into account its 
effects on the two-stage rolling power dispatch decisions, 
and the latter should be consistent with the day-ahead 
schedule.

In the proposed two-stage rolling dispatch framework, 
the intra-day rolling optimal scheme is based on the 
traditional open-loop optimal control algorithm which is 
rolled every 15min, and the future 4hs’ (16 periods in total) 
scheduling instructions are given. In this scheme, the on-
off states of fast response units are scheduled to cope with 
the unexpected power deviation which is not covered in 
day-ahead UC. This scheme aims to provide the thermal



MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

650 │ J Electr Eng Technol.2018; 13(2): 648-658

unit reference output for the real-time rolling base point 
tracking scheme. The real-time rolling scheme is based on 
MPC which includes the leading rolling optimization and 
lagging feedback correction strategy to pursue the optimal 
performance in a future time window. The latest measured 
thermal units’ output data is collected by the measurement 
system as an input to this scheme. This scheme is rolled 
every 5min, and the future 15mins’ (3 periods in total) 
scheduling instructions are also given, but only the first 
period’s scheduling instruction is implemented. The 
dispatch framework and optimization sequence diagram are 
presented in Fig. 1 and Fig. 2.

We assume that load and wind power uncertainties only 
influence the reserve demand, which means thermal unit 
output can be scheduled according to certain forecasts at 
different timescales, and the reserve capacity is scheduled 
to balance the uncertain forecast errors. The uncertainty 
variables are only included in the reserve constraints, and 
the feasible probability of reserve constraint is represented 
by confidence level. 

In general, the closer to the operating time, the higher 
robustness of scheduling is required, and the longer to the 
operating time, the higher economy of scheduling is required. 
Hence, with the dispatch time approaches, the confidence 

level is rising to reflect the ever-rising characteristics of 
forecast accuracies and expected satisfaction degree with 
the reliable system operation. Reserve constraints can be 
properly loosened to avoid power overshooting at the 
long timescale, while be tightened to reduce the power 
adjustments at the short timescale. The economy and 
reliability of holistic dispatch are coordinated by the 
changes of different confidence level; as a result the 
forecast deviations are gradually accommodated.

2.3 Modeling load and wind power uncertainties

Since that load and wind power uncertainties modeling 
is required in our model, the uncertainty model is presented 
here. Load and wind power are expressed as the sum of 
the certain forecasts and the uncertain forecast errors, 
respectively. The load and wind power are modeled as 
below.
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where a ( )D t and a
W ( )P t  are the actual values of load and 

wind power at time t, f ( )D t and f
W ( )P t  are the forecasts 

of load and wind output at time t, D ( )te and W ( )te  are 
the forecast errors of load and wind output at time t. As is 
mentioned above, D D( ) (0, ( ))t N te s: , W W( ) (0, ( ))t N te s: . 
The sum of D ( )te and W ( )te  also follows Gaussian distri-
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2.4 The intra-day rolling optimal scheme

The intra-day rolling optimal scheme is based on the 
traditional open-loop optimal control algorithm, which is to 
provide the thermal unit reference output for the real-time 
rolling base point tracking scheme. Based on the fact that 
the on-off states of slow response thermal units have been 
determined by the day-ahead UC, only fast response 
thermal units’ on-off states are scheduled in the intra-day 
scheme to cope with the unexpected power deviation. 
Since the extended short-term wind power forecast errors 
are relatively large, the confidence level to the reserve 
constraint of intra-day rolling scheme is set at a smaller 
value. 

The intra-day rolling optimal scheme is modeled as 
follows:
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Fig. 1. Two-stage rolling power dispatch framework

Fig. 2. Sequence diagram of the two-stage rolling power 
dispatch approach
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where 0t  is the starting time of this scheme, ( )iu t

represents the on-off states of two types of thermal units, 
one is the on-off states of slow response thermal units 
which have already been determined by the day-ahead UC, 
and the other is the on-off states of fast response thermal 
units which are to be decided in this intra-day rolling 
scheme.

In the above formulation, the objective function (2) is to 
minimize the operating cost. Eq. (3) is the load balance 
constraint. Constraint (4) and (5) are the reserve chance 
constraints, (6) is the unit output limit, (7) is the ramp-up/-
down rates limit, (8) is the minimum up/down time limit, 
(9) is the on-off states limit, (10) is the network security 
limit. 

2.5 The real-time rolling base point tracking scheme 

The real-time rolling base point tracking scheme is 
modeled based on MPC. MPC is a model-based finite-time 
closed-loop optimal control algorithm. MPC relies on 
dynamic models of the process, most often linear empirical 
models obtained by system identification. The main 
advantage of MPC is that it allows the current timeslot to 
be optimized while taking future timeslots into account. 
This is achieved by optimizing a finite time-horizon, but 
only implementing the current timeslot. MPC has the 
ability to anticipate future events and then take control 
actions accordingly. 

The latest thermal units’ output data is collected by the 
measurement system as an input to this scheme. The multi-
step dynamic rolling optimization and feedback correction 
strategy are adopted to cover the power deviation timely. 
At each sampling time, the future 15mins’ (3 periods in 

total) thermal unit output increments are calculated based 
on the unit output model. When the power deviation occurs, 
the control mode with the smallest power adjustments is 
adopted to ensure the economy, but only the first period’s 
output increment will be implemented. Compared with the 
traditional static real-time dispatch approach for a single 
time period, this real-time rolling scheme has stronger 
robustness.

2.5.1 Unit output model

The ultra short-term wind power forecasts are taken as 
the input variables, the latest measured value of thermal 
unit output is taken as initial values and the future 15mins’ 
(TB periods in total, B 3T = ) thermal unit output 
increments are made as control variables, that is: 
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base point tracking scheme is modeled as follows:
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where G ( )iP t k+%  is the reference output of thermal unit i at 
future time t+k determined by the intra-day rolling scheme.

In the above formulation, the objective function (12) is 
to minimize the power deviations. Constraints (13)-(18) are 
similar to (3)-(7) and (10). 

When the output increments in the future 15min(3 
periods in total) are solved at current sampling time t, 
only the first period’s output increment G ( 1 | )iP t tD +  is 
implemented and then the planned thermal unit output of 
the next moment t+1 is updated:
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2.5.3 Feedback correction

The above rolling optimization is a leading control based 
on forecasts. However, at the present wind power prediction
accuracy, the advanced control can cause power deviation 
between the actual output and the planned output of 
thermal unit. Therefore, the lagging feedback correction 
strategy is introduced. At each sampling time, the latest 
measured thermal unit output is adopted to correct the unit 
output determined by the rolling optimization strategy. 
Thus, the closed-loop optimization is formed to cover the 
power deviation timely and make the future time’s thermal 
unit output closer to the reality.

For the next sampling moment t+1, a new round rolling 
optimization will be carried out, and the latest measured 

thermal unit output of time t+1 is set as the initial value. 
That is:

ini act
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where act
G ( 1)iP t +  represents the measured output of 

thermal unit i at the next sampling moment t+1 which is 
collected by the measurement system.

The optimization flow chart of the real-time rolling base 
point tracking scheme is shown in Fig. 3.

3. Assessment of Reserve Adequacy Considering 

Uncertainties

The significant volatility of wind power puts forward 
higher requirement to the reserve capacity, so we propose 
two indicators: up and down reserve shortage expectation, 
to quantify the system reserve level, as well as reflect the 
adequacy of the upward reserve and the downward reserve.

The Cauchy, Beta or Gaussian distributions are the 
widely-used techniques to model the uncertainty in power 
systems. As for many geographically dispersed wind farms, 
according to the central limit theorem, the forecast error is 
usually assumed as a random variable that obeys the law of 
Gaussian distribution. In [3, 4], the Gaussian distribution 
has been widely applied to approximate the probability 
density function of the wind power generation. For the 
sake of simplicity, the load and wind power forecast 
errors at different forecasting horizons are assumed to 
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Fig. 3. Flow chart of the real-time rolling base point 
tracking scheme
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follow Gaussian distribution with zero mean and 
heteroscedasticity in this paper. Based on this assumption, 
the interval distribution of the expectation of up reserve 
shortage (EURS) and the expectation of down reserve 
shortage (EDRS) are shown in Fig. 4. The gray area at 
right side is defined as the EURS, and the gray area at left 
side is defined as the EDRS. The EURS (EDRS) stands for 
the up (down) reserve deficiency, that is, when the sum of 
actual load and wind power is less (greater) than the 
forecasts, the up (down) reserve capacity will be less than 
the quantity of power fluctuation. 

Based on the occurrence probabilities of different power 
shortages, indicators of EURS R+  and EDRS R- are 
proposed and deduced in (21) and (22) to reflect the 
adequacy of upward reserve and the downward reserve.

2

2

U

2
U

2

2 ( )
U

( )

( )

2 ( ) U
U

1
( ) ( ( ))

2 ( )

( )( )
( )[1 ( )]

( )2

x

t

R t

R t

t

R t x R t e dx
t

R tt
e R t

t

s

s

ps

s

sp

-+¥

+

-

= -

= - -F

ò
(21)

2
D

2

2
D

2

( )

2 ( )
D

( )

2 ( ) D
D

1
( ) ( ( ) )

2 ( )

( )( )
( ) ( )

( )2

xR t

t

R t

t

R t R t x e dx
t

R tt
e R t

t

s

s

ps

s

sp

--

-

-¥

-

= - -

-
= - F

ò
 (22)

where ( )F ×  represents the standard normal distribution 
function. 

4. Deterministic Equivalents of the Reserve 

Constraints

Based on the assumption that load and wind power 
forecast errors follow Gaussian distribution, the chance 
constrained programming is applied to deal with uncertainty
variables. This rolling power dispatch approach is cast as a 
two-stage stochastic programming problem, where the first 
stage deals with the SCUC problem in the intra-day rolling 
scheme, and the second stage represents the security-
constrained economic dispatch(SCED) problem in the real-

time rolling scheme. 
For each rolling dispatch model, only the reserve 

constraints are chance constraints, and others are deter-
ministic constraints. So the reserve constraints which 
contain random variables are transformed into deterministic
equivalents at every timescale to reduce the model solution 
difficulty. 

For the function ( , ) ( )g x h xx x= - , if and only if 
1( ) ( )h x Ka f a-³ = , then Pr{ ( ) }h x x a³ ³ , the smallest 

one is chosen to be the solution of Pr{ ( ) }h x x a³ ³ , given 
by 
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where ( )f ×  is the probability distribution function of the 
random variables; 1( )f - ×  is the inverse function. Take the 
intra-day rolling scheme for example, the deterministic 
equivalent of the up reserve constraint is given by
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The deterministic equivalent of the down reserve 
constraint is given by
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Now the reserve constraints have been transformed into 
deterministic equivalents, the proposed dispatch model is a 
mixed integer nonlinear programming problem at each 
stage. The mathematical programming software GUROBI 
is used to solve the two-stage rolling optimization model.

5. Numerical Simulations 

5.1 Case data

The performance of MPC-based two-stage rolling 
dispatch approach is tested on the IEEE RTS system. 
Assuming that only the hot start of hermal unit is 
considered, thermal unit 1 and 2, 5 and 6 and 15 to 19 are 
fast response units and others are slow response units. The 
thermal unit data, line data and bus load proportion can be 
found in Refs. [21, 22]. A wind farm replaces six hydro 
units at bus 22. The load and wind power curves of 8h (96 
time intervals in total) are shown in Fig. 5. The prediction 

U( )R t( )DR t-

U ( )
[1 ( )]

( )

R t

ts
-FD ( )

( )
( )

R t

ts

-
F

Fig. 4. Interval distribution of EURS and EDRS
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curves are obtained by adding disturbance to the actual 
power curves. Assuming the wind power short-term 
forecast error is 30%, then the day-ahead wind power 
forecasts are obtained based on the actual wind power with 
the addition of white noise whose expectation is 0 and the 
standard deviation is 0.3 times the forecasts. Similarly, 
assuming the extended short-term forecast error and ultra 
short-term forecast error of wind power are 15%, 10%, 
respectively, and the short-term forecast error, extended 
short-term forecast error and ultra short-term forecast error 
of load are 1.5%, 1%, 0.5%, respectively. The penalty cost 
of curtailed wind is 100$/MW, the power adjustment cost 
is 10$/MW, and the confidence level incremental vector of 
reserve constraints is set as A B=[ , ]a aα

r
=[0.9, 0.95].

5.2 Results analysis of two-stage rolling dispatch 

Fig. 6 illustrates the output curves of thermal unit 8, unit 
20, unit 22 and unit 24 given by our two-stage rolling 
power dispatch approach and day-ahead UC, indicating 
that the thermal unit output in the real-time rolling scheme 
is smoother. Fig. 7 presents the contrast curve of power 
deviation between the planned total generation output and 
the actual electricity demand in different dispatch schemes. 
For the day-ahead UC, the power deviation is enormous, 
which cannot satisfy the actual scheduling requirements. 
While in the intra-day rolling scheme, the planned total 
generation output is relatively close to the actual electricity 
demand, and the power deviation in the real-time rolling 
scheme is tiny, which can well match the actual load 
demand. We can conclude that the two-stage rolling power 
dispatch approach can gradually adjust the thermal unit 
output determined by the day-ahead UC, so as to ease the 
power adjustment burden and reduce the power adjustment 
costs. 

Full accommodation of wind power is not a must in our 
rolling dispatch model. Instead, we attach importance to 

the satisfaction degree with down reserve constraints at the 
corresponding dispatch scheme and allow the occurrence 
of wind curtailment. The wind power curtailment amount 
and wind power curtailment rate at different dispatch 
schemes are shown in Fig. 8 and Table 1. The wind power 
curtailment rate of day-ahead UC is 17.2%. After the 
correction of two-stage rolling dispatch scheme, the wind 
power curtailment rate has dropped to 4.9%, indicating 
that the single day-ahead dispatch can cause severe wind 
power curtailment problem and the two-stage rolling 
dispatch scheme can effectively promote wind power 
accommodation. Thus, multi-level coordination, gradual 
refinement and feedback correction can be brought 
together to deal with wind power fluctuation.

Besides, the EDRS at different dispatch schemes is 
shown in Fig. 9 to evaluate the adequacy of down reserve, 
indicating that the day-ahead dispatch has the greatest 
EDRS and the real-time rolling scheme has the smallest. 
With the dispatch time approaches, the wind power 

Fig. 5. Load and wind power curve Fig. 6. Unit output curve of (a) unit 8, (b) unit 20, (c) unit 
22, (d) unit 24

Fig. 7. Contrast curve of power deviation in different 
dispatch schemes
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prediction precision and the confidence level of the down 
reserve constraints is rising, leading to the gradual decrease 
of EDRS. That is to say, the risk of the system down 
reserve shortage is gradually reducing, and the system 
operation reliability is improved progressively.

5.3 Comparisons of different dispatch approaches

To compare the output smoothness of thermal unit in the 
single day-ahead dispatch mode and the MPC-based two-
stage rolling dispatch mode, the output variances of slow 
response thermal units are shown in Fig. 10, illustrating 
that the thermal unit output of the single day-ahead 
dispatch mode has higher variances than those of the MPC-
based two-stage rolling dispatch mode. That is to say, the 

two-stage rolling dispatch approach can make the thermal 
unit output smoother to well accommodate the wind power 
fluctuation. 

On the basis of intra-day rolling optimal scheme, two 
real-time dispatch modes are adopted for comparison. 
Mode 1 is the proposed MPC-based real-time rolling base 
point tracking mode; mode 2 is the traditional static real-
time dispatch approach for a single time period. The output 
curve of typical thermal units and the output variances of 
slow response thermal units in the dispatch cycle of these 
two real-time dispatch modes are shown in Fig. 11 and Fig.
12, illustrating that the thermal unit output in mode 1 is 
smoother than that of mode 2. As mode 1 has taken into 
account the forecasts in a future finite-time window and the 
influence of latest measured thermal unit output on the 
current dispatch status, it can avoid the repeated adjustment 
and over-regulation of thermal unit output, which is 
beneficial to accommodate the wind power fluctuation and 
can make the thermal unit output smother. Through two-

Fig. 8. Wind power curtailment amount at different 
dispatch schemes

Fig. 9. Expectation of down reserve shortage (EDRS)

Table 1. Wind power curtailment rate at different dispatch 
schemes

Day-ahead 
UC

Intra-day 
rolling optimal 

scheme

Real-time rolling 
base point tracing 

scheme
Wind power 

curtailment rate
17.2% 12.4% 4.9%

Fig. 10. Unit output variances of day-ahead dispatch mode 
and two-stage rolling dispatch mode

Fig. 11. Thermal unit output curve of two real-time 
dispatch approaches of (a) unit 8, (b) unit 20, (c) 
unit 22, (d) unit 24
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stage rolling power dispatch, the system operation 
reliability can be improved, the mechanical loss of thermal 
unit can be reduced and the working life of thermal unit 
can be extended at the same time.

The total costs of power adjustment and the wind power 
curtailment rate of two real-time dispatch modes are 
compared in Table 2. Total output adjustment costs of Mode
1 is only 81% of model 2, while the wind power curtailment
rate is reduced by 1.8%. We can conclude that mode 1 is 
more conducive to promoting wind power accommodation 
and reducing the costs of power adjustment in the real-time 
dispatch stage. Since mode 1 adopts the future 15min’s 
thermal unit output increments as the control variables and 
continuously takes the latest measured thermal unit output 
to feedback to this scheme, the power deviation caused by 
stochastic factors can be timely correct, and the power 
adjustment costs can be reduced.

6. Conclusions

In this paper, we present a two-stage generation and 
reserve joint optimization approach based on MPC for 
wind power integrated power systems, which contain an 
intra-day rolling optimal scheme and a real-time rolling 
base point tracing scheme. The scheduling output of the 
long timescale scheme is set as the reference output, and 
the real-time rolling scheme is based on MPC to pursue the 
optimal performance in a future time window. Considering 

that wind power forecasts at different timescales have 
variable accuracies, we set the confidence level of reserve 
constraints at different timescales as the incremental vector 
to reflect the time-varying characteristics of forecast errors 
and the dispatcher’s expectation to reliable operation. The 
expectation of up and down reserve shortage is therefore 
proposed to reflect the adequacy of the upward reserve and 
the downward reserve. 

Simulations on the IEEE RTS system shows that the 
proposed MPC-based two-stage rolling dispatch approach 
can better adjust the reserve demand and the unit outputs 
according to the continuously updated forecasts, and the 
power fluctuations can be coordinated and accommodated 
gradually. Multi-level coordination, gradual refinement and 
feedback correction can be brought together to maximize 
wind power accommodation.

For a real system, although the optimization scale will 
become larger, the two-stage rolling scheme can 
significantly reduce the adjustment burden of AGC units. 
The situation that the AGC adjustment capability cannot 
deal with the large fluctuation of wind power in the real-
time stage and the possible wind power curtailment or load 
shedding can be avoided. The future work is to study how 
to decouple and coordinate the time dimension and the 
space dimension of the real-time rolling model, so as to 
obtain a more practical model suitable for the online 
applications. This puts forward the requirements for the 
efficiency of real-time rolling algorithm and will be one of 
our future research areas. 
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Nomenclature

A. Indices and Sets

d Index of load buses.
i Index of thermal units.
j Index of wind farms.
l Index of load lines.
L Set of internal lines.

DN Set of load buses.

GN Set of thermal units.

WN Set of wind farms.

B. Variables

( )iu t On-off states of thermal unit i at time t.
( )iv t / ( )iw t Start/stop actions of thermal unit i at time t.

G ( )iP t Output of thermal unit i at time t.

Fig. 12. Unit output variances of two real-time dispatch 
approaches

Table 2. Comparisons between two different real-time 
dispatch approaches

MPC-based real-
time rolling mode 

(mode 1)

Traditional static real-
time dispatch mode 

(mode 2)
Wind power 

curtailment rate
4.9% 6.7%

Total costs of power 
adjustment ($)

62 902 77 224
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A
U ( )iR t / B

U ( )iR t Available up reserve capacity of unit i at 
time t in the intra-day/real-time rolling 
scheme.

A
D ( )iR t / B

D ( )iR t Available down reserve capacity of unit i at 
time t in the intra-day/real-time rolling 
scheme.

A
W ( )jP tD /

B
W ( )jP tD Wind power curtailed amount of wind 

farm j at time t in the intra-day/real-time 
rolling scheme.

C. Parameters

ia , ib , ic Fuel cost coefficients of thermal unit i.
SU
ir Start-up cost of thermal unit i.

g Power adjustment cost in the real-time 
rolling scheme.

cWr Penalty price of curtailed wind power.
A ( )te / B ( )te Sum of load and wind power forecast 

errors at time t in the intra-day/real-time 
rolling scheme.

Aa / Ba Confidence level of the intra-day/real-time 
rolling scheme.

A ( )dD t / B ( )dD t Load forecasts of bus d at time t in the 
intra-day/real-time rolling scheme.

G ,i lH / W ,j lH / D ,d lH Power transfer distribution factor of 
thermal unit i, wind farm j and load d.

lL Maximum transmission power of line l.

GiP / GiP Minimum/maximum power output of 
thermal unit i.

A
W ( )jP t /

B
W ( )jP t Power forecasts of wind farm j at time t in 

the intra-day/real-time rolling scheme.

iRU / iRD Ramp-up/-down limit of 15min of thermal 
unit i.

U ( )R t / D ( )R t Available up/down reserve capacity at time
t.

AT / BT Time periods of the intra-day/real-time 
rolling scheme.

on ( 1)iT t - /
off ( 1)iT t - Continuous starting up/off time of 

thermal unit i up to time t-1.
on

iT /
off

iT Minimum continuous starting up/off time 
of thermal unit i.
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