• Title/Summary/Keyword: renewable Energy

Search Result 6,060, Processing Time 0.038 seconds

Renewable Energy Production by Heat Pump as Renewable Energy Equipment (신재생에너지 기기로서 히트펌프의 신재생에너지 생산량)

  • Hong, Hiki;Choi, Junyoung;Im, Shin Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.551-557
    • /
    • 2017
  • Most European economies, Japan, and many governments have made it a major policy to expand the green business by disseminating heat pump technology, which has a large $CO_2$ reduction effect. The heat pump of all heat sources has been recognized as renewable energy and the policy to encourage has been implemented. In the recently revised Renewable Energy Law, the hydrothermal source (surface sea water) heat pump was newly included in renewable energy. In addition, the scope of application of heat pumps has expanded in the mandatory installation of renewable energy for new buildings, remodeling buildings, and reconstructed buildings based on this law. However application to heat pumps using all natural energy as heat source has been put off. In this revision, the ratio of renewable energy to the total energy produced by the heat pump was fixed at 73%, which depends on coefficient of performance of heat pump. The ratio of renewable energy is $1-1.8/COP_H$, and should be calculated including the coefficient of performance of the heat pump. Using a high efficiency heat pump or a high-temperature heat source increases the coefficient of performance and also reduces $CO_2$ emissions. It is necessary to expand the application of heat pumps as renewable energy equipment and to improve the correct calculation of renewable energy production.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

Wind Energy and Energy Policy in Germany (독일의 풍력 에너지 보급 현황과 지원 정책)

  • Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.134.1-134.1
    • /
    • 2011
  • As eco-friendly energy is in the spotlight, lots of countries are out to develop and disseminate renewable energy. However, Korea still remains in relative newcomer position for renewable energy. To overcome the present condition, it is necessary to carry out a study of establishment of renewable energy policy that is appropriate the present situation of Korea from examples of advanced countries. Among several renewable energies, wind energy is known to be the most reliable energy. Germany that has increased the share of wind energy in total energy supply is a representative leading country for wind energy. Therefore wind energy policy in Germany will be a role model for that in Korea. In this study, as a research of portfolio for wind energy policy of advanced countries, a wide survey for current status of wind energy and energy policy in Germany is carried out.

  • PDF

Proposal of New Correction Factors for New and Renewable Energy Sources in Public Building (공공건축물에 적용되는 신·재생에너지원의 새로운 보정계수 제안)

  • Kim, Yun-Ho;Park, Yun-Ha;Won, An-Na;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.13-24
    • /
    • 2016
  • The government introduced a mandatory installation system of new & renewable energy for public building to meet the target of greenhouse gas reduction and also suggest a correction factor for new renewable energy to expand the installation of various new & renewable energy systems. The introduction of correction factors, however, was followed by the reduction of installation size of new & renewable energy sources. Assuming that it was caused by a correction factor for each new renewable energy source calculated by the initial costs, this study proposed a new correction factor approach based on payback periods to reflect the technology element in the calculation process of correction factors additionally. The application results of new correction factors show that it was possible to do complex calculations including the economic and technological aspects to select a new & renewable energy system and that the installation size was also enlarged.

Comparative Assessment of Typical Year Dataset based on POA Irradiance (태양광 패널 일사량에 기반한 대표연도 데이터 비교 평가)

  • Changyeol Yun;Boyoung Kim;Changki Kim;Hyungoo Kim;Yongheack Kang;Yongil Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • The Typical Meteorological Year (TMY) dataset compiles 12 months of data that best represent long-term climate patterns, focusing on global horizontal irradiance and other weather-related variables. However, the irradiance measured on the plane of the array (POA) shows certain distinct distribution characteristics compared with the irradiance in the TMY dataset, and this may introduce some biases. Our research recalculated POA irradiance using both the Isotropic and DIRINT models, generating an updated dataset that was tailored to POA characteristics. Our analysis showed a 28% change in the selection of typical meteorological months, an 8% increase in average irradiance, and a 40% reduction in the range of irradiance values, thus indicating a significant shift in irradiance distribution patterns. This research aims to inform stakeholders about accurate use of TMY datasets in potential decision-making. These findings underscore the necessity of creating a typical dataset by using the time series of POA irradiance, which represents the orientation in which PV panels will be deployed.

A Study on Demand for Renewable Energy Workforce and HRD Policy Strategy (신.재생에너지 중장기 인력 수요 전망 및 인력양성 방향 연구)

  • Lee, You-Ah;Lee, Dong-Jun;Heo, Eun-Nyeong;Kim, Min-Ji;Choi, Hyuk-Joon
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.4
    • /
    • pp.736-760
    • /
    • 2011
  • The importance of new renewable energy is emphasized not only new growth engine but also the key solution for the exhaustion problem of fossil energy and environment problem. For the steady growth of new renewable energy industry, securing related labor force is an essential factor. In this study, the status on labor force of new renewable energy industry was identified and forecasted the labor force demand of new renewable energy in 2015 by reflecting the industrial growth outlook on the new renewable energy. For the quantitative analysis methodology, the stock approach of Bureau of Labor Statistics (BLS) of the United States was applied. Also by performing survey on the experts, the opinions of experts on supply and demand of new renewable energy labor force or worker training programs have been gathered. As a result of study, it has been analyzed that nearly 20% annual growth rate will be shown as the labor force demand in the field of new renewable energy industry increases from 14,100 people in 2010 to 33,200 people in 2015. In the survey on experts, we could find that a plan for supplying labor force must be prepared promptly in order to accomplish new renewable energy supply objectives and industrial growth objectives by our country in the future as the supply of new renewable energy labor force is currently insufficient. Also, it has been analyzed that the effort for deciding the proper new renewable energy labor force training program standard will be necessary. This study result could be used as a material of labor force training plan for the steady growth of new renewable energy industry in the future.

  • PDF

Conditions to Introduce the Renewable Portfolio Standards in Korea ($\cdot$재생에너지 의무비율할당제(Renewable Portfolio Standards) 국내도입시 고려사항에 관한 연구)

  • Chang, Han-Soo;Choi, Ki-Ryun;Kim, Su-Duk
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.82-97
    • /
    • 2005
  • RPS (Renewable Portfolio Standards) is a policy tool to disseminate renewable energies through market mechanism. RPS promotes renewable power generation by obligating electricity market participants to deliver the required amount of electricity from renewable energies. To promote and encourage renewable energies, Korean government is considering to introduce RPS to domestic market in the near future. The purpose of this paper is to analyze the definition and market mechanism of RPS and to review key considerations in its design. In conclusion, we recommend some prerequisite in its introduction to Korea.

Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy (신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법)

  • Ja-hyun, Baek;Hyeonjin, Kim;Soonho, Choi;Sangho, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.

Indicators of Economic Evaluation and Case Studies on New & Renewable Energy (신재생에너지 경제성 평가 결과 분석 및 평가지표 연구)

  • Ahn Eun-Young;Kim Seong-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.600-603
    • /
    • 2005
  • U.S. National Research Council proposed benefits framework for energy R&D project as economic benefits, environmental benefits, security benefits and knowledge benefits. Following this framework, U.S. National Renewable Energy Laboratory evaluated the projected benefits of Federal Energy Efficiency and Renewable Energy Programs in the indicators of energy-expenditure savings, energy system cost savings, $CO_2$ emissions reductions. oil savings, natural gas saving and avoided additions to central conventional power. As this result, geothermal energy have predominant position in the energy-expenditure savings, natural gas saving and avoided addi t ions to central conventional power to FY2050. The projected benefits, in monetary value, of the whole supply-potential of geothermal energy in Korea were evaluated as 480.2 billion Won, 43.1 billion Won and 135.8 billion Won for the private energy-cost savings, social environmental-cost savings, and import energy-cost saving, respectively.

  • PDF