• Title/Summary/Keyword: renal antioxidant enzymes

Search Result 26, Processing Time 0.031 seconds

Anti-oxidative Effect of a Protein from Cajanus indicus L against Acetaminophen-induced Hepato-nephro Toxicity

  • Ghosh, Ayantika;Sil, Parames C.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1039-1049
    • /
    • 2007
  • Overdoses of acetaminophen cause hepato-renal oxidative stress. The present study was undertaken to investigate the protective effect of a 43 kDa protein isolated from the herb Cajanus indicus, against acetaminophen-induced hepatic and renal toxicity. Male albino mice were treated with the protein for 4 days (intraperitoneally, 2 mg/kg body wt) prior or post to oral administration of acetaminophen (300 mg/kg body wt) for 2 days. Levels of different marker enzymes (namely, glutamate pyruvate transaminase and alkaline phosphatase), creatinine and blood urea nitrogen were measured in the experimental sera. Intracellular reactive oxygen species production and total antioxidant activity were also determined from acetaminophen and protein treated hepatocytes. Indices of different antioxidant enzymes (namely, superoxide dismutase, catalase, glutathione-S-transferase) as well as lipid peroxidation end-products and glutathione were determined in both liver and kidney homogenates. In addition, Cytochrome P450 activity was also measured from liver microsomes. Finally, histopathological studies were performed from liver sections of control, acetaminophen-treated and protein pre- and post-treated (along with acetaminophen) mice. Administration of acetaminophen increased all the serum markers and creatinine levels in mice sera along with the enhancement of hepatic and renal lipid peroxidation. Besides, application of acetaminophen to hepatocytes increased reactive oxygen species production and reduced the total antioxidant activity of the treated hepatocytes. It also reduced the levels of antioxidant enzymes and cellular reserves of glutathione in liver and kidney. In addition, acetaminophen enhanced the cytochrome P450 activity of liver microsomes. Treatment with the protein significantly reversed these changes to almost normal. Apart from these, histopathological changes also revealed the protective nature of the protein against acetaminophen induced necrotic damage of the liver tissues. Results suggest that the protein protects hepatic and renal tissues against oxidative damages and could be used as an effective protector against acetaminophen induced hepato-nephrotoxicity.

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

Phaleria macrocarpa Suppress Nephropathy by Increasing Renal Antioxidant Enzyme Activity in Alloxan-Induced Diabetic Rats

  • Triastuti, Asih;Park, Hee-Juhn;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2009
  • The protective effects of Phaleria macrocarpa (PM) against oxidative stress in diabetic rats were investigated. Diabetes was induced in male Sprague Dawley rats using alloxan (150 mg/kg i.p). After the administration of PM fractions for two weeks the diabetic symptoms, nephropathy and renal antioxidant enzymes were evaluated. The results showed that the oral PM treatments reduced blood glucose levels in diabetic rats. The PM fractions decreased kidney hypertrophy and diminished blood urea nitrogen (BUN) in diabetic rats. Malondialdehyde (MDA), a lipid peroxidation marker, was increased in diabetic animals, but was suppressed by the PM treatments. In addition, the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased compared with those in the normal rats, but were restored by PM treatments. The PM fractions also suppressed the level of MDA in the kidney. In conclusion, the anti hyperglycemic and anti-nephropathy of P. macrocarpa may be correlated to the increased renal antioxidant enzyme activity in the kidney.

Antioxidant Effects of Ascorbic Acid on Renal-Ischemia Reperfusion Injury in Rabbit Model

  • Kim, Jong-Man;Lee, Jae-Yeon;Kim, Duck-Hwan;Jeong, Seong-Mok;Park, Chang-Sik;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • Renal ischemia-reperfusion (I/R) injury is great clinical important because viability of the organ depends on the tolerance to ischemia-reperfusion injury, an inevitable processing during surgery. The purpose of this study was to investigate the effects of premedicated ascorbic acid alone in I/R injury model induced by cross-clamping of renal vessels. In the rabbit models, 2-4 kg New Zealand white rabbits were subjected to 30 minutes of warm unilateral renal ischemia followed by removal of contralateral kidney and then divided into five groups, control (2) arid treatment groups (3). In control group 1, the rabbits only received right nephrectomy. In control group 2, the rabbits received I/R on left kidney after the right nephrectomy. In treatment group 1, the rabbits received ascorbic acid 50 mg/kg IV before the operation. In treatment group 2, the rabbits received ascorbic acid 100 mg/kg IV before the operation. In treatment group 3, the rabbits received ascorbic acid 200 mg/kg IV before the operation. Blood samples were collected from these rabbits for measurement of kidney function tests at the 0, 1 st, 3rd and 7th day and antioxidant enzyme( SOD, GSHPx, CAT) at 24 hours. Kidney function tests (serum creatinine and BUN) showed a significant difference between group 2 and group 4, 5. Activity of antioxidant enzymes in plasma were significant decrease in group 4, 5 compare to group 2. The result of this study suggested that the exogenous ascorbic acid had a role of attenuation of renal I/R injury in rabbit model.

Antidiabetic, Antioxidative and Renoprotective Effects of Rehmanniae Radix preparata Extract in Streptozotocin-induced Diabetic Rats

  • Kim, Hye-Jeong;Yoon, In-Sook;Kim, Young-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • This study investigated the effect of Rehmanniae Radix preparata extract on the antioxidant enzymes of kidney and renal function in streptozotocin-induced diabetic rats. Male Sprague-Dawley rats were divided into three groups including normal control (NC), diabetic control (DC), and diabetic treatment with Rehmanniae Radix preparata (DRR). Over a 4-week study period, Rehmanniae Radix preparata aqueous extract was administered orally at 1124 mg/kg BW/day. The serum glucose level in the DRR group was significantly lower (P<0.05) than the DC group. The serum blood urea nitrogen in diabetic groups was significantly higher (P<0.001) than the NC group. The urinary total protein level in the DRR group was significantly lower (P<0.05) than the DC group. The renal xanthine oxidase activity in the DRR group was significantly lower (P<0.01) than the DC group. The renal catalase activity in the DC group was significantly lower (P<0.05) compared to the NC group and that was significantly higher (P<0.05) in the DRR group than the DC group. In conclusion, these results indicated that Rehmanniae Radix preparata can prevent or retard the development of diabetic nephropathy via its beneficial effects for correcting the hyperglycemia and favorable effects on antioxidant enzyme system.

  • PDF

Effects of Short Term Antioxidant Cocktail Supplementation on the Oxidative Stress and Inflammatory Response of Renal Inflammation in Diabetic Mice (당뇨 쥐의 신장 염증 단계에서 단기간의 혼합 항산화 영양소 보충 식이가 산화적 스트레스와 염증반응의 조절에 미치는 영향)

  • Park, Seul-Ki;Park, Na-Young;Lim, Yun-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.8
    • /
    • pp.673-681
    • /
    • 2009
  • Diabetes mellitus is a multifactorial disease. Particularly, diabetic nephropathy is a serious complication for diabetic patients, yet the precise mechanisms that underline the initial stage of diabetic renal inflammation remain unknown. However, oxidative stress induced by hyperglycemia in diabetes is implicated in diabetic renal disease. We hypothesized that dietary supplementation of antioxidants either VCE (0.5% VC + 0.5% VE) or Comb (0.5% VC + 0.5% VE + 2.5% N-acetylcysteine) improves acute diabetic renal inflammation through modulation of blood glucose levels and antioxidant and anti-inflammatory responses. Experimental animals (5.5 weeks old female ICR) used were treated with alloxan (180 mg/kg) once. When fasting blood glucose levels were higher than 250 mg/dL, mice were divided into 3 groups fed different levels of antioxidant supplementation, DM (diabetic mice fed AIN 93G purified rodent diet); VCE (diabetic mice fed 0.5% vitamin C and 0.5% vitamin E supplemented diet); Comb (diabetic mice fed 0.5% vitamin C, 0.5% vitamin E and 2.5% N-acetylcysteine supplemented diet), for 10 days and then sacrificed. Body weights were measured once a week and blood glucose levels were monitored twice a week. Lipid peroxidation products, thiobarbituric acid reacting substances were measured in kidney. NF-${\kappa}B$ activation was indirectly demonstrated by pI${\kappa}B$-${\alpna}$ and expressions of selective inflammatory and oxidative stress markers including antioxidant enzymes were also determined. Dietary antioxidant supplementation improved levels of blood glucose as well as kidney lipid peroxi-dation. Dietary antioxidant supplementation improved NF-${\kappa}B$ activation and protein expression of HO-1, but not mRNA expression levels in diabetic mice fed Comb diet. In contrast, the mRNA and protein expression of CuZnSOD was decreased in diabetic mice fed Comb diet. However, antioxidant supplementation did not improve mRNA and protein expressions of IL-$1{\beta}$ and MnSOD in diabetic mice. These findings demonstrate that acute diabetic renal inflammation was associated with altered inflammatory and antioxidant responses and suggest that antioxidant cocktail supplementation may have beneficial effects on early stage of diabetic nephropathy through modulation of blood glucose levels and antioxidant enzyme expressions.

Attenuation of Renal Ischemia-Reperfusion Injury by Antioxidant Vitamins in Pigs (돼지의 신장에서 Antioxidant Vitamins에 의한 허혈 및 재관류 손상의 감소에 관한 연구)

  • Kim, Myung-Jin;Lee, Soo-Jin;Park, Chang-Sik;Son, Hwa-Young;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.94-98
    • /
    • 2007
  • This study was to investigate the effects of ascorbic acid and alpha-tocopherol on the attenuation of renal ischemia-reperfusion (IR) injury in pigs. Ten pigs were subjected to 60 minutes of warm unilateral renal ischemia followed by removal of contralateral kidney and then divided into two groups. Treatment group was performed ascorbic acid and alpha-tocopherol pretreatment 2 days before operation and ascorbic acid with heparin-saline solution irrigation-aspiration. Otherwise, control group used only irrigation-aspiration of heparin-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values, antioxidant superoxide dismutase (SOD) at pre, day 1, day 3, day 7 and day 14. The kidneys were taken for histopathologic evaluation after euthanasia on postoperative day 14. The levels of BUN were significantly increased in the control group on day 1, day 3 and day 7 (P<0.05). And the level of creatinine was significantly increased in the control group on day 3 (p<0.05). Activity of antioxidant enzymes in plasma revealed significant difference (p<0.05) between control and treatment group at day 14. In histopathologic findings, treatment group was showed less damage than that of control group on the basis of renal tubular damage. It was concluded that ascorbic acid and alpha-tocopherol attenuated renal I/R injury in the pigs.

Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension

  • Kang, Kyu-Tae;Sullivan, Jennifer C.;Pollock, Jennifer S.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • Many studies reported reduced antioxidant capacity in the vasculature under hypertensive conditions. However, little is known about the effects of antihypertensive treatments on the regulation of vascular antioxidant enzymes. Thus, we hypothesized that antihypertensive treatments prevent the reduction of antioxidant enzyme activity and expression in the small vessels of angiotensin II-induced hypertensive rats (ANG). We observed the small mesenteric arteries and small renal vessels of normotensive rats (NORM), ANG, and ANG treated with a triple antihypertensive therapy of reserpine, hydrochlorothiazide, and hydralazine (ANG + TTx). Systolic blood pressure was increased in ANG, which was attenuated by 2 weeks of triple therapy (127, 191, and 143 mmHg for NORM, ANG, and ANG + TTx, respectively; p < 0.05). Total superoxide dismutase (SOD) activity in the small mesenteric arteries of ANG was lower than that of NORM. The protein expression of SOD1 was lower in ANG than in NORM, whereas SOD2 and SOD3 expression was not different between the groups. Reduced SOD activity and SOD1 expression in ANG was not restored in ANG + TTx. Both SOD activity and SOD isoform expression in the small renal vessels of ANG were not different from those of NORM. Interestingly, SOD activity in the small renal vessels was reduced by TTx. Between groups, there was no difference in catalase activity or expression in both the small mesenteric arteries and small renal vessels. In conclusion, SOD activity in the small mesenteric arteries decreased by angiotensin II administration, but not by hypertension, which is caused by decreased SOD1 expression.

Effects of Chungkookjang on Blood Glucose, Antioxidant Enzyme Activities and Histological Changes in Kidney of STZ-induced Diabetic Rats

  • Kim, Hye-Jeong;Kim, Young-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.211-218
    • /
    • 2008
  • The purpose of this study was to investigate the effects of dietary Chungkookjang (Korean fermented soybean) powder on blood glucose level, lipid profiles, antioxidant enzymes activities and histological changes in kidney of streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats of three groups including nondiabetic group fed normal diet (NC), diabetic group fed normal diet (DC) and diabetic group fed Chungkookjang diet (DCH; 100 g/kg diet) were reared for 8 weeks. The serum glucose, triglycelide and total lipid levels in the DCH group were significantly lower (P<0.05) than the DC group. The renal xanthine oxidase, catalase and glutathione S-transferase activities in the DC group were significantly higher than the NC group. The xanthine oxidase, superoxide dismutase and glutathione S-transferase activities in the DCH group were significantly lower than the DC group (P<0.05). Tubular epithelial change, such as Armanni-Ebstein cells, was significantly reduced in the DCH group compared to the DC group. In conclusion, these results indicated that Chungkookjang supplement seems to be beneficial to correct the hyperglycemia and hyperlipidemia as well as to protect kidney against diabetic changes.

  • PDF

Antioxidant Effect of Viola mandshurica W. Becker on the High Fat Diet-Induced Renal Oxidative Stress (고지방식이로 유도한 신장의 산화적 스트레스에 대한 자화지정(紫花地丁)의 항산화 효과)

  • Choi, Mi Hye;Park, In Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.250-256
    • /
    • 2016
  • The prevalence of renal disease is increased with the overweight and obesity. High fat diet-associated oxidative stress increases production of reactive oxygen species (ROS) and induces apoptosis. There are two types of antioxidant defense mechanisms for oxidative stress. One is the enzyme defense mechanism by antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT). The other is non-enzyme defense mechanism by signaling molecules such as nuclear factor-like 2 (Nrf-2), HO-1. In this study, we induced obesity in mice with high fat diet for six weeks and thereafter administered orally Viola mandshurica for 4 weeks. V. mandshurica is known to clear heat, detoxify and cool blood, and subside a swelling effect. In the V. mandshurica administered group, the immunoreactive signal of the Tunel staining was weaker than that of obesity group. Proapoptotic Bax, caspase 3 immunoreactives of the V. mandshurica administered group was lower than those of obesity group, whereas anti-apoptotic Bcl-2 immunoreactity was higher in the V. mandshurica administered group. Antioxidant enzyme mechanism such as superoxide dismutase 2 (SOD2), catalase (CAT) immunoreactives of the V. mandshurica administered group and Antioxidant non-enzyme mechanism such as Nuclear factor-like 2 (Nrf2), Heme Oxygenase 1 (HO-1) immunoreactives of the V. mandshurica administered group was higher than those of obesity group. These results demonstrate that V. mandshurica had the antioxidant and anti-apoptosis effects on obese mice.