Browse > Article
http://dx.doi.org/10.5487/TR.2018.34.4.363

Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension  

Kang, Kyu-Tae (College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University)
Sullivan, Jennifer C. (Department of Physiology, Augusta University)
Pollock, Jennifer S. (Medical College of Georgia, Augusta University)
Publication Information
Toxicological Research / v.34, no.4, 2018 , pp. 363-370 More about this Journal
Abstract
Many studies reported reduced antioxidant capacity in the vasculature under hypertensive conditions. However, little is known about the effects of antihypertensive treatments on the regulation of vascular antioxidant enzymes. Thus, we hypothesized that antihypertensive treatments prevent the reduction of antioxidant enzyme activity and expression in the small vessels of angiotensin II-induced hypertensive rats (ANG). We observed the small mesenteric arteries and small renal vessels of normotensive rats (NORM), ANG, and ANG treated with a triple antihypertensive therapy of reserpine, hydrochlorothiazide, and hydralazine (ANG + TTx). Systolic blood pressure was increased in ANG, which was attenuated by 2 weeks of triple therapy (127, 191, and 143 mmHg for NORM, ANG, and ANG + TTx, respectively; p < 0.05). Total superoxide dismutase (SOD) activity in the small mesenteric arteries of ANG was lower than that of NORM. The protein expression of SOD1 was lower in ANG than in NORM, whereas SOD2 and SOD3 expression was not different between the groups. Reduced SOD activity and SOD1 expression in ANG was not restored in ANG + TTx. Both SOD activity and SOD isoform expression in the small renal vessels of ANG were not different from those of NORM. Interestingly, SOD activity in the small renal vessels was reduced by TTx. Between groups, there was no difference in catalase activity or expression in both the small mesenteric arteries and small renal vessels. In conclusion, SOD activity in the small mesenteric arteries decreased by angiotensin II administration, but not by hypertension, which is caused by decreased SOD1 expression.
Keywords
Superoxide dismutase; Angiotensin II; Triple antihypertensive therapy; Small vessels;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gongora, M.C., Qin, Z., Laude, K., Kim, H.W., McCann, L., Folz, J.R., Dikalov, S., Fukai, T. and Harrison, D.G. (2006) Role of extracellular superoxide dismutase in hypertension. Hypertension, 48, 473-481.   DOI
2 Zhan, C.D., Sindhu, R.K., Pang, J., Ehdaie, A. and Vaziri, N.D. (2004) Superoxide dismutase, catalase and glutathione peroxidase in the spontaneously hypertensive rat kidney: effect of antioxidant-rich diet. J. Hypertens., 22, 2025-2033.   DOI
3 Welch, W.J., Chabrashvili, T., Solis, G., Chen, Y., Gill, P.S., Aslam, S., Wang, X., Ji, H., Sandberg, K., Jose, P. and Wilcox, C.S. (2006) Role of extracellular superoxide dismutase in the mouse angiotensin slow pressor response. Hypertension, 48, 934-941.   DOI
4 Carlsson, L.M., Marklund, S.L. and Edlund, T. (1996) The rat extracellular superoxide dismutase dimer is converted to a tetramer by the exchange of a single amino acid. Proc. Natl. Acad. Sci. U.S.A., 93, 5219-5222.   DOI
5 Landmesser, U., Dikalov, S., Price, S.R., McCann, L., Fukai, T., Holland, S.M., Mitch, W.E. and Harrison, D.G. (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest., 111, 1201-1209.   DOI
6 Pollock, D.M. and Rekito, A. (1998) Hypertensive response to chronic NO synthase inhibition is different in Sprague-Dawley rats from two suppliers. Am. J. Physiol., 275, R1719-R1723.
7 Sullivan, J.C., Pollock, D.M. and Pollock, J.S. (2002) Altered nitric oxide synthase 3 distribution in mesenteric arteries of hypertensive rats. Hypertension, 39, 597-602.   DOI
8 Schneider, M.P., Wach, P.F., Durley, M.K., Pollock, J.S. and Pollock, D.M. (2010) Sex differences in acute ANG II-mediated hemodynamic responses in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R899-R906.   DOI
9 Vera, T., Kelsen, S., Yanes, L.L., Reckelhoff, J.F. and Stec, D.E. (2007) HO-1 induction lowers blood pressure and superoxide production in the renal medulla of angiotensin II hypertensive mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, R1472-R1478.   DOI
10 Lewis, P., Stefanovic, N., Pete, J., Calkin, A.C., Giunti, S., Thallas-Bonke, V., Jandeleit-Dahm, K.A., Allen, T.J., Kola, I., Cooper, M.E. and de Haan, J.B. (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 115, 2178-2187.   DOI
11 Kang, K.T., Sullivan, J.C., Sasser, J.M., Imig, J.D. and Pollock, J.S. (2007) Novel nitric oxide synthase--dependent mechanism of vasorelaxation in small arteries from hypertensive rats. Hypertension, 49, 893-901.   DOI
12 Meng, S., Roberts, L.J., 2nd, Cason, G.W., Curry, T.S. and Manning, R.D., Jr. (2002) Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 283, R732- R738.   DOI
13 Sasser, J.M., Sullivan, J.C., Hobbs, J.L., Yamamoto, T., Pollock, D.M., Carmines, P.K. and Pollock, J.S. (2007) Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J. Am. Soc. Nephrol., 18, 143-154.   DOI
14 Westman, G. and Marklund, S.L. (1980) Diethyldithiocarbamate, a superoxide dismutase inhibitor, decreases the radioresistance of Chinese hamster cells. Radiat. Res., 83, 303-311.   DOI
15 Griendling, K.K., Sorescu, D. and Ushio-Fukai, M. (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res., 86, 494-501.   DOI
16 Kim, M., Han, C.H. and Lee, M.Y. (2014) NADPH oxidase and the cardiovascular toxicity associated with smoking. Toxicol. Res., 30, 149-157.   DOI
17 Kase, H., Hashikabe, Y., Uchida, K., Nakanishi, N. and Hattori, Y. (2005) Supplementation with tetrahydrobiopterin prevents the cardiovascular effects of angiotensin II-induced oxidative and nitrosative stress. J. Hypertens., 23, 1375-1382.   DOI
18 Kang, K.T., Sullivan, J.C., Spradley, F.T., d'Uscio, L.V., Katusic, Z.S. and Pollock, J.S. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats. Am. J. Physiol. Heart. Circ. Physiol., 300, H718-H724.
19 Inscho, E.W., Cook, A.K., Murzynowski, J.B. and Imig, J.D. (2004) Elevated arterial pressure impairs autoregulation independently of AT(1) receptor activation. J. Hypertens., 22, 811-818.   DOI
20 Vanourkova, Z., Kramer, H.J., Huskova, Z., Vaneckova, I., Opocensky, M., Chabova, V.C., Tesar, V., Skaroupkova, P., Thumova, M., Dohnalova, M., Mullins, J.J. and Cervenka, L. (2006) AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J. Hypertens., 24, 2465-2472.   DOI
21 Lip, G.Y., Edmunds, E., Nuttall, S.L., Landray, M.J., Blann, A.D. and Beevers, D.G. (2002) Oxidative stress in malignant and non-malignant phase hypertension. J. Hum. Hypertens., 16, 333-336.   DOI
22 Higashi, Y., Sasaki, S., Nakagawa, K., Matsuura, H., Oshima, T. and Chayama, K. (2002) Endothelial function and oxidative stress in renovascular hypertension. N. Engl. J. Med., 346, 1954-1962.   DOI
23 Wu, R., Millette, E., Wu, L. and de Champlain, J. (2001) Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. J. Hypertens., 19, 741-748.   DOI
24 Ulker, S., McMaster, D., McKeown, P.P. and Bayraktutan, U. (2003) Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc. Res., 59, 488-500.   DOI
25 Uehara, Y., Numabe, A., Hirawa, N., Kawabata, Y., Iwai, J., Ono, H., Matsuoka, H., Takabatake, Y., Yagi, S. and Sugimoto, T. (1991) Antihypertensive effects of cicletanine and renal protection in Dahl salt-sensitive rats. J. Hypertens., 9, 719-728.   DOI
26 Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B.A., Griendling, K.K. and Harrison, D.G. (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest., 97, 1916-1923.   DOI
27 Russo, C., Olivieri, O., Girelli, D., Faccini, G., Zenari, M.L., Lombardi, S. and Corrocher, R. (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J. Hypertens., 16, 1267-1271.   DOI
28 Lee, M.Y. and Griendling, K.K. (2008) Redox signaling, vascular function, and hypertension. Antioxid. Redox. Signal., 10, 1045-1059.   DOI
29 Cai, H. and Harrison, D.G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res., 87, 840-844.   DOI
30 Karlsson, K. and Marklund, S.L. (1988) Extracellular superoxide dismutase in the vascular system of mammals. Biochem. J., 255, 223-228.
31 Beswick, R.A., Zhang, H., Marable, D., Catravas, J.D., Hill, W.D. and Webb, R.C. (2001) Long-term antioxidant administration attenuates mineralocorticoid hypertension and renal inflammatory response. Hypertension, 37, 781-786.   DOI
32 Daiber, A., Mulsch, A., Hink, U., Mollnau, H., Warnholtz, A., Oelze, M. and Munzel, T. (2005) The oxidative stress concept of nitrate tolerance and the antioxidant properties of hydralazine. Am. J. Cardiol., 96, 25i-36i.
33 Marklund, S.L. (1984) Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J., 222, 649-655.   DOI
34 Jung, O., Marklund, S.L., Geiger, H., Pedrazzini, T., Busse, R. and Brandes, R.P. (2003) Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ. Res., 93, 622-629.   DOI
35 Fukai, T., Siegfried, M.R., Ushio-Fukai, M., Griendling, K.K. and Harrison, D.G. (1999) Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ. Res., 85, 23-28.   DOI
36 Griendling, K.K., Minieri, C.A., Ollerenshaw, J.D. and Alexander, R.W. (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res., 74, 1141-1148.   DOI
37 Didion, S.P., Kinzenbaw, D.A. and Faraci, F.M. (2005) Critical role for CuZn-superoxide dismutase in preventing angiotensin II-induced endothelial dysfunction. Hypertension, 46, 1147-1153.   DOI
38 Fukui, T., Ishizaka, N., Rajagopalan, S., Laursen, J.B., Capers, Q., Taylor, W.R., Harrison, D.G., de Leon, H., Wilcox, J.N. and Griendling, K.K. (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ. Res., 80, 45-51.   DOI
39 Kim, S.M. and Kang, J.H. (1997) Peroxidative activity of human Cu,Zn-superoxide dismutase. Mol. Cells, 7, 120-124.