Browse > Article

Phaleria macrocarpa Suppress Nephropathy by Increasing Renal Antioxidant Enzyme Activity in Alloxan-Induced Diabetic Rats  

Triastuti, Asih (Department of Pharmacy, UII University)
Park, Hee-Juhn (Department of Industrial Pharmacy, Sangji University)
Choi, Jong-Won (College of Pharmacy, Kyungsung University)
Publication Information
Natural Product Sciences / v.15, no.3, 2009 , pp. 167-172 More about this Journal
Abstract
The protective effects of Phaleria macrocarpa (PM) against oxidative stress in diabetic rats were investigated. Diabetes was induced in male Sprague Dawley rats using alloxan (150 mg/kg i.p). After the administration of PM fractions for two weeks the diabetic symptoms, nephropathy and renal antioxidant enzymes were evaluated. The results showed that the oral PM treatments reduced blood glucose levels in diabetic rats. The PM fractions decreased kidney hypertrophy and diminished blood urea nitrogen (BUN) in diabetic rats. Malondialdehyde (MDA), a lipid peroxidation marker, was increased in diabetic animals, but was suppressed by the PM treatments. In addition, the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased compared with those in the normal rats, but were restored by PM treatments. The PM fractions also suppressed the level of MDA in the kidney. In conclusion, the anti hyperglycemic and anti-nephropathy of P. macrocarpa may be correlated to the increased renal antioxidant enzyme activity in the kidney.
Keywords
Phaleria macrocarpa; Hyperglycemia; Diabetic nephropathy; Oxidative stress;
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
  • Reference
1 Baynes, J.W. and Thorpe, S.R., Role of oxidative stress in diabetes vascular complications: a new perspective of an old paradigm. Diabetes, 48, 1-9 (1999)   DOI   ScienceOn
2 Marklund S. and Marklund, G., Involvement of the superoxide anion radical in the autooxidation of pyrogallol & convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 (1974)   DOI   ScienceOn
3 Ohkawa, H., Ohishi, N., and Yaki, K., Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351-358 (1979)   DOI   ScienceOn
4 Sugiwati, S., Kardono, L.B.S., and Bintang, M., Alpha-glucosidase inhibitory activity and hypoglycemic effect of Phaleria macrocarpa fruit pericarp extracts by oral administration to rats. J. Applied Sci., 6, 2312-2316 (2006)   DOI
5 Triastuti, A., Tito, F., and Wibowo, A., Antiangiogenic effect of the ethanolic extract from Phaleria macrocarpa Boerl. fruit on chick embryo chorio allantoic membrane (CAM) induced by BFGF, National Symposium in Medicinal Plants of Indonesia, Solo-Indonesia (2006)
6 Vinik, A.I. and Vinik, E., Prevention of the complications of diabetes. Am. J. Manag. Care., 9, 63-80 (2003)
7 West, I.C., Radicals and oxidative stress in diabetes. Diabet Med., 17, 171-180 (2000)   DOI   ScienceOn
8 Yamamoto, H., Uchigata, Y., and Okamoto, H., Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature, 294, 284-286 (1981)   DOI   ScienceOn
9 Zhang, Y.B., Xu, X.J., and Liu, H.M., Chemical constituents from Mahkoda Dewa. J. Asian Nat. Prod. Res., 8, 119-123 (2006)   DOI   ScienceOn
10 Triastuti, A, Bachri, M.S., and Choi, J.W., Protective effect of butanol fraction of Phaleria macrocarpa on oxidative stress associated with atreptozotocin induced diabetic mice. International Symposium, Pharmaceutical Society of Korea. PD2-5 (2008)
11 Bansal, R., Ahmad, N., and Kidwai, J.R., Alloxan-glucose interaction: Effect on incorporation of C-leucine into pancreatic islets of rat. Acta Diabetologica Latina, 17, 135-143 (1980)   DOI   PUBMED
12 Oshimi, S., Zaima, K., Matsuno, Y., Hirasawa, Y., Iizuka, T., Studiawan, H., Indrayanto, G., Zaini, N.C., and Morita, H., Studies onthe constituents from the fruits of Phaleria macrocarpa. Nat. Med. (Tokyo). 62, 207-210 (2008)   DOI   ScienceOn
13 Faried, A., Kurnia, D., Faried, L.S., Usman, N., Miyazaki, T., Kato, H., and Kuwano, H., Anticancer effects of gallic acid isolated from Indonesia herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int. J. Oncol., 30, 605-613 (2007)   PUBMED
14 Paglia, E.D. and Valentine, W.N., Studies on the quantitative and qualitative charactrization of erythrocytes glutathione peroxide. J. Lab. Clin. Med,. 70, 158-169 (1967)   PUBMED   ScienceOn
15 Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., and Takahashi, H., Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad,and the glutathione connection. Diabetes, 52, 581-587 (2003)   DOI   ScienceOn
16 Wild, S., Roglic, G., Green, S., Sicree, R., and King, H., Global prevalence of diabetes, estimates for the year 2000 and projections for 2030, Diabetes Care, 27, 1047-1053 (2004)   DOI   ScienceOn
17 Bohlender, H.M., Franke, S., Stein, G., and Wof, G., Advanced glycation end products and the kidney. Am. J. Physiol. Renal. Physiol. 289, F645-F659 (2005)   DOI   PUBMED   ScienceOn
18 Wells, B.G., Dipiro, J.T., Schwinghammer, T.L., and Hamilton, C.W., Pharmacotherapy Handbook, McGraw-Hill, pp. 170-181 (2003)
19 Gill, P.S. and Wilcox, C.S., NADPH oxidases in the kidney. Antioxid. Redox. Signal., 8, 1597-1607 (2006)   DOI   ScienceOn
20 Mahboob, M., Rahman, M.F., and Grover, P., Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Med. J., 46, 322-324 (2005)   PUBMED   ScienceOn
21 Saufi, A., von Heimendahl, C.B., Alfermann, A.W., and Fuss, E., Stereochemistry of lignans in Phaleria macrocarpa (Scheff.) Boerl. Z. Naturforsch., 63, 13-16 (2008)
22 Giardino, I., Edelstein, D., and Brownlee, M., BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Invest., 97, 1422-1428 (1996)   DOI   PUBMED
23 Turko I.V., Marcondes, S., and Murad, F., Diabetes-associated nitration of tyrosine and activation of succinyl-CoA:3-oxoacid CoA transferase. Am. J. Physiol. Heart. Circ. Physiol., 281, 2289-2294 (2001)   ScienceOn
24 Mitchell, J.R., Jollow, D.W., Potter, W.Z., Gillette, J.R., and Brodie, B.B., Acetaminophen-induced hepatic necrosis IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 187, 211-217 (1973)   PUBMED   ScienceOn
25 Bryla, J., Kiersztan, A., and Jagielski, A.K., Promising novel approaches to diabetes mellitus therapy: pharmacological, molecular and cellular insights, Eur. Citizen's. Qual. Life., 1, 137-161 (2003)
26 Harmanto, N., Conquering Disease in Unison with Mahkota Dewa, Ir. Harmanto (Ed.), p.14 PT Mahkota Dewa Indonesia, North Jakarta 2003
27 Winarto, W.P., Mahkota Dewa: Budidaya dan pemanfaatan Untuk Obat. Penebar Swadaya, Indonesia (2003)
28 Evans, J.L., Goldfine, I.D., Maddux, B.A., and Grodsky, G.M., Oxidative stress and stress-activated signaling pathyways: a unifying hypothesis of type 2 diabetes. Endocr. Rec., 23, 599-622 (2002)   DOI   ScienceOn
29 Aebi, H., Catalase. In "Methods of enzymatic analysis" Vergmeyer, M.U., Academic Press, New York., 2, 673 (1974)
30 Ellman, G.L., Tissue sulfhydryl group. Arc. Biochem. Biophys. 237, 1589-95 (1959)
31 Stevens, M.J., Redox-based mechanisms in diabetes. Antioxid. Redox. Signal., 7, 1483-1485 (2005)   DOI   ScienceOn
32 Lowry, O., H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)   PUBMED
33 Akkus, I., Kalak, S., Vural, H., Caglayan O., Menekse, E., and Can G., Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin. Chim. Acta., 244, 221-227 (1996)   DOI   ScienceOn
34 Brownlee, M., Biochemistry and molecular cell biology of diabetic complications, Nature, 414, 813-820 (2001)   DOI   PUBMED   ScienceOn