• Title/Summary/Keyword: removal capacity

Search Result 1,101, Processing Time 0.026 seconds

CO2 Removal using MEA (monoethanolamine) Impregnated Mesoporous Materials (MEA (monoethanolamine) 함침 메조포러스 물질을 이용한 CO2 회수)

  • Park, Ye-Won;Baek, Il-Hyun;Park, Sang-Do;Lee, Jae-Wook;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.573-581
    • /
    • 2007
  • The present study deals with removal of $CO_2$ using various mesoporous materials impregnated with MEA (monoethanolamine). The mesoporous materials such as MCM-41, MCM-48 and SBA-15 were synthesised and then impregnated with 30, 50 and 70 wt% of MEA, respectively. XRD, FT-IR and SEM were used to evaluate the characterization of those. From the adsorption/desorption experiments for various materials, the adsorption capacity of these materials were found in the order of MCM-41> MCM-48> SBA-15. MCM-41 impregnated with 50 wt% of MEA showed the maximum adsorption capacity of $57.1mg-CO_2/gr-sorbent$ at $40^{\circ}C$. It is nearly 8 times higher than MCM-41 without impregnation of MEA. In the multiple cycle test of 20 times, MCM-41 impregnated with 50 wt% of MEA showed a constant adsorption capacity.

A Study on the comparison on Adsorption characteristics of Zeolite and DETOX for the removal of H2S (H2S 제거를 위한 Zeolite와 DETOX의 흡착 특성 비교 연구)

  • Park, Dae-Seok;Lim, Ji-Young;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4675-4681
    • /
    • 2014
  • This study examined the $H_2S$ removal characteristics, such as breakthrough time, adsorption capacity, and adsorption rate of adsorbents between Zeolite 3A and DETOX in terms of the $H_2S$ inflow concentration and adsorption temperature. The adsorption capacity of Zeolite 3A increased with increasing mass flow rate of hydrogen sulfide($H_2S$) inflow, but the breakthrough time decreased. On the other hand, both the adsorption capacity and breakthrough time of DETOX decreased with increasing mass flow rate of $H_2S$ inflow. The adsorption capacity and breakthrough time of Zeolite 3A decreased with increasing adsorption temperature but those of DETOX increased. The adsorption capacity of DETOX was higher than that of Zeolite 3A by a factor of 2.5 - 16.4 because the collision frequency that overcomes the activation energy barrier increased with increasing adsorption temperature. For Zeolite 3A and DETOX, the adsorption rate of $H_2S$ increased with increasing mass flow rate of $H_2S$ inflow and adsorption temperature. The adsorption rate of $H_2S$ for Zeolite 3A was 4 times as much as that for DETOX. For the removal of $H_2S$ in biogas, DETOX had an advantage over Zeolite 3A because DETOX had a much longer breakthrough time and greater adsorption capacity in the temperature range of 308~318K than Zeolite 3A.

Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization (광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교)

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.

Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud (Red Mud의 산처리 및 열처리가 불소 제거에 미치는 영향)

  • Kang, Ku;Nyakunga, Expedito;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.210-217
    • /
    • 2015
  • Fluoride removal by acid and heat treated red mud were studied in batch and column system regarding contact time, initial concentration, pH, adsorbent dose, and filter depth. The results showed that acid treated with 0.8 M HCl, had highest adsorption capacity of fluoride and adsorption capacity decreased as heat treatment temperature increased. Sorption equilibrium reached in 30 min at a initial concentration of 50 mg-F/L but 1 h was required to reach the sorption equilibrium at the initial concentration of 500 mg-F/L by 0.8 M acid treated red mud (0.8 M-ATRM). Equilibrium adsorption data were fitted well to Langmuir isotherm model with maximum fluoride adsorption capacity of 23.162 mg/g. The fluoride adsorption decreased as pH increased due to the fluoride competition for favorable adsorption site with $OH^-$ at higher pH. Removal percentage was increased but the amount of adsorption per unit mass decreased by adding the amount of 0.8 M-ATRM. It was concluded that the 0.8 M-ATRM could be used as a potential adsorbent for the fluoride removal from aqueous solutions because of its high fluoride adsorption capacity and low cost.

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

A Study on Heavy Metal Removal Characteristics Using Bone Char (골탄(bone char)의 중금속 제거 특성에 관한 연구)

  • Kim, Jae-Young;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.253-258
    • /
    • 2007
  • The adsorption capacity of bone char for lead, cadmium and zinc was studied in both single and binary multiple component systems. Equilibrium experimental studies have been performed to determine the sorption capacity of bone char for each metal ion. These have been analysed using single and multi-component equilibrum models. The results show that the sorption of metal ions for multi-component systems can be predicted reasonably well from the IAS theory with the Langmuir equation, the Freundlich and the Slip equation for metal ions.

Evaluation of NH4+-N Ion Exchange Property using Natural Zeolite and Zeolite Carrier (천연 제올라이트와 제올라이트 담체를 이용한 NH4+-N 이온교환 특성 평가)

  • Lee, Kwang Hyun;Park, Min Suk;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.750-757
    • /
    • 2009
  • The ammonium ion exchange characteristics of natural zeolite were investigated to remove ${NH_4}^+-N$. The effect of water temperature, particle size and competitive cation on the exchange capacity was examined. Ammonium ion exchange capacity tended to decrease when the temperature increased from $25^{\circ}C$ to $40^{\circ}C$. Exchange capacity was increased according to the particle size of natural zeolite comes to be small. Batch isotherm experiments were conducted for measuring ammonium ion exchange capacity. The ion exchange capacity was well described either by the Langmuir isotherm model or by the Freundlich isotherm model. The ammonium ion exchange capacity ($q_m$) of zeolite carrier can be calculated $11.744mg-{NH_4}^+/g$-carrier. The ion exchange capacity of manufactured zeolite carrier was showed a similar tendency as ion exchange capacity of powder-sized natural zeolite. Therefore, zeolite carrier can be used for increasing of nitrogen removal efficiency in the wastewater treatment plants.

Adsorptive Removal of Hazardous Organics from Water with Metal-organic Frameworks (금속-유기 골격체(Metal-organic Frameworks)를 활용한 물로부터의 유해 유기물의 흡착 제거)

  • Seo, Pill Won;Song, Ji Yoon;Jhung, Sung Hwa
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.358-365
    • /
    • 2016
  • Removing hazardous materials from water resources is very important for efficient utilization of the resources, and adsorptive removal is regarded as a competitive technology when good adsorbents with high capacity/selectivity are available. Metal-organic framework (MOF), composed of both organic and inorganic (metallic) species, have been tried for various adsorptions because of huge surface area/pore volume, well-defined pore structure, and facile functionalization. In this review, we summarized technologies on adsorptive removal of hazardous organics from water mainly using MOFs as adsorbents. Instead of reporting high adsorption capacity or rate, we summarized mechanisms of interaction between adsorbates (organics) and adsorbents (MOFs) and methods to modify or functionalize MOFs for effective adsorptions. We expect for readers of this review to understand needed characteristics of adsorbents for the adsorptive removal, functionalization of MOFs for effective adsorption and so on. Moreover, they might have an idea on storage and delivery of organics via understanding of the mechanism of adsorption and interaction.

Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media (활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리)

  • Amarsanaa Altangerel;Shin Won-Sik;Choi Jeong-Hak;Choi Sang-June
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.

Synthesis of polysulfone beads impregnated with Ca-sepiolite for phosphate removal

  • Hong, Seung-Hee;Lee, Chang-Gu;Jeong, Sanghyun;Park, Seong-Jik
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Former studies revealed that sepiolite thermally treated at high temperature have high adsorption capacity for phosphate. However, its micron size (75 ㎛) limits its application to water treatment. In this study, we synthesized sepiolite impregnated polysulfone (PSf) beads to separate it easily from an aqueous solution. PSf beads with different sepiolite ratios were synthesized and their efficiencies were compared. The PSf beads with 30% impregnated sepiolite (30SPL-PSf bead) possessed the optimum sepiolite ratio for phosphate removal. Kinetic, equilibrium, and thermodynamic adsorption experiments were performed using the 30SPL-PSf bead. Equilibrium adsorption was achieved in 24 h, and the pseudo-first-order model was suitable for describing the phosphate adsorption at different reaction times. The Langmuir model was appropriate for describing the phosphate adsorption onto the 30SPL-PSf bead, and the maximum adsorption capacity of the 30SPL-PSf bead obtained from the model was 24.48 mg-PO4/g. Enthalpy and entropy increased during the phosphate adsorption onto the 30SPL-PSf bead, and Gibb's free energy at 35 ℃ was negative. An increase in the solution pH from 3 to 11 induced a decrease in the phosphate adsorption amount from 27.30 mg-PO4/g to 21.54 mg-PO4/g. The competitive anion influenced the phosphate adsorption onto the 30SPL-PSf bead was in the order of NO3- > SO42- > HCO3-. The phosphate breakthrough from the column packed with the 30SPL-PSf bead began after ~2000 min, reaching the influent concentration after ~8000 min. The adsorption amounts per unit mass of 30SPL-PSf and removal efficiency were 0.775 mg-PO4/g and 61.6%, respectively. This study demonstrates the adequate performance of 30SPL-PSf beads as a filter for phosphate removal from aqueous solutions.