DOI QR코드

DOI QR Code

Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud

Red Mud의 산처리 및 열처리가 불소 제거에 미치는 영향

  • Kang, Ku (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Nyakunga, Expedito (Graduate School of International Development and Cooperation, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University) ;
  • Park, Seong-Jik (Department of Bioresources & Rural systems Engineering, Hankyong National University)
  • 강구 (한경대학교 미래융합기술대학원) ;
  • ;
  • 김영기 (한경대학교 화학공학과) ;
  • 박성직 (한경대학교 지역자원시스템공학과)
  • Received : 2015.03.09
  • Accepted : 2015.04.23
  • Published : 2015.04.30

Abstract

Fluoride removal by acid and heat treated red mud were studied in batch and column system regarding contact time, initial concentration, pH, adsorbent dose, and filter depth. The results showed that acid treated with 0.8 M HCl, had highest adsorption capacity of fluoride and adsorption capacity decreased as heat treatment temperature increased. Sorption equilibrium reached in 30 min at a initial concentration of 50 mg-F/L but 1 h was required to reach the sorption equilibrium at the initial concentration of 500 mg-F/L by 0.8 M acid treated red mud (0.8 M-ATRM). Equilibrium adsorption data were fitted well to Langmuir isotherm model with maximum fluoride adsorption capacity of 23.162 mg/g. The fluoride adsorption decreased as pH increased due to the fluoride competition for favorable adsorption site with $OH^-$ at higher pH. Removal percentage was increased but the amount of adsorption per unit mass decreased by adding the amount of 0.8 M-ATRM. It was concluded that the 0.8 M-ATRM could be used as a potential adsorbent for the fluoride removal from aqueous solutions because of its high fluoride adsorption capacity and low cost.

Red mud의 염산처리와 열처리에 의한 불소의 제거 특성을 살펴보고자 동역학적 흡착, 평형흡착, pH, 흡착제의 주입량에 따른 흡착특성, 그리고 칼럼을 이용한 연속식 조건에서의 불소흡착 특성을 살펴보았다. Red mud의 산처리는 HCl 0.8 M 농도에서 효과적이었고, 열처리 온도가 높음에 따라 흡착량이 감소하였다. 0.8 M로 산처리한 Red mud (0.8 M-ATRM)의 동역학적실험 결과 초기농도 50 mg-F/L는 30분대에 평형농도에 도달하였고, 초기농도 500 mg-F/L에서는 1시간대 흡착평형을 나타내었다. 0.8 M-ATRM은 단층흡착을 가정한 Langmuir 모델에 잘 부합하였고, 최대흡착량($Q_m$)은 23.162 mg/g으로 나타났다. 또한 낮은 pH에서 높은 불소 흡착경향을 나타내었다. 이는 높은 pH에서 불소와 $OH^-$가 경쟁관계를 형성하기 때문으로 판단된다. 0.8 M-ATRM의 주입량이 증가 할수록 제거율은 높아졌지만, 단위질량당 흡착량은 감소하였다. 본 연구에서 사용된 0.8 M-ATRM은 가격이 저렴할 뿐만 아니라 불소에 높은 흡착능을 나타내어 수중 불소 제거에 효과적인 흡착소재로 판단된다.

Keywords

References

  1. Mahramanlioglu, M., Kizilcikli, I. and Bicer, I. O., "Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth," J. Fluor. Chem., 115(1), 41-47(1999). https://doi.org/10.1016/S0022-1139(02)00003-9
  2. Horowitz, H. S., "Decision-making for national programs of community fluoride use," Commun. Dent. Oral Epidemiol., 28(5), 321-329(2000). https://doi.org/10.1034/j.1600-0528.2000.028005321.x
  3. Xiong, X., Liu, J., He, W., Xia, T., He, P., Chen, X. and Wang, A., "Dose-Effect Relationship between Drinking Water Fluoride Levels and Damage to Liver and Kidney Functions in Children," Environ. Res. J., 103, 112-116 (2007). https://doi.org/10.1016/j.envres.2006.05.008
  4. Ayoob, S. and Gupta. A. K., "Fluoride in drinking water: A review on the status and stress effects," Crit. Rev. Environ. Sci. Technol., 35, 433-487(2006).
  5. Kim, J. H., Song, Y. M. and Kim, S. B., "Fluoride removal from aqueous solution using thermally treated pyrophylite as adsorbent," J. Korean Soc. Environ. Eng., 35(2), 131-136(2013). https://doi.org/10.4491/KSEE.2013.35.2.131
  6. Eskandarpour, A., Onyango, M. S., Ochieng, A. and Asai, S., "Removal of fluoride ions from aqueous solution at low pH using schwertmannite," J. Hazard. Mater., 152, 571-579 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.020
  7. Chuang, T. C., Huang, C. J. and Liu, J. C., "Treatment of semiconductor wastewater by dissolved air flotation," J. Environ. Eng., 128, 974-980 (2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(974)
  8. Huang, C. J. and Liu, J. C., "Precipitation flotation of fluoride-containing wastewater from semi-conductor manufacture," Water Res., 33, 3403-3412(1999). https://doi.org/10.1016/S0043-1354(99)00065-2
  9. Hu, C. Y., Lo, S. L., Kuan, W. H. and Lee, Y. D., "Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation," Water Res., 39, 895-901(2005). https://doi.org/10.1016/j.watres.2004.11.034
  10. Vaaramaa, K. and Lehto, J., "Removal of metals and anions from drinking water by ion exchange," Desalination, 155, 157-170(2003). https://doi.org/10.1016/S0011-9164(03)00293-5
  11. Amor, Z., Bariou, B., Mameri, N., Toky, M., Nicolas, S. and Elmidaoui, S., "Fluoride removal from brackish water by electrodialysis," Desalination, 133, 215-223(2011).
  12. Bhatnagar, A., Kumar, E. and Sillanpaa M., "Fluoride removal from water by adsorption: A review," Chem. Eng. J., 171, 811-840(2011). https://doi.org/10.1016/j.cej.2011.05.028
  13. Zhou, Y., Yu, C. and Shan, Y., "Adsorption of Fluoride from Aqueous Solution on La3+-Impregnated Cross-Linked Gelatin," Sep. Purif. Technol., 36, 89-94 (2004). https://doi.org/10.1016/S1383-5866(03)00167-9
  14. Raichur, A. M. and Basu, M. J., "Adsorption of Fluoride onto Mixed Rare Earth Oxides," Sep. Purif. Technol., 24, 121-127 (2001). https://doi.org/10.1016/S1383-5866(00)00219-7
  15. Lee, D. S., Park, S. H. and Zong, M. S., "Defluoridation of wastewater by adsorption on bituminous coal fly ash," Korean J. Environ. Health Soc., 19(1), 51-56(1993).
  16. Lee, J. S. and Kim, D. S., "Studies on the adsorption characteristics of fluoride ion-containing wastewater by employing waste oyster shell as an adsorbent," J. Korean Soc. Water Qual., 23(2), 222-227(2007).
  17. Tor, A., Danaoglu, N., Arslan, G. and Cengeloglu, Y., "Removal of fluoride from water by using granular red mud: Batch and column studies," J. Hazard. Mater., 164, 271-278 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.011
  18. Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J. and Jia, Z., "Phosphate removal from aqueous solutions using raw and activated red mud and fly ash," J. Hazard. Mater B., 137, 374-383(2006). https://doi.org/10.1016/j.jhazmat.2006.02.011
  19. Dursun, S., Guclu, D. and Bas, M., "Phosphate removal by using activated red mud from Seydisehir Alumimium Factoty in Turkey," J. Int. Environ. Appl. Sci., 1(3&4), 98-106(2006).
  20. Um, B. H., Jo. S. W., Kang. K. and Park, S. J., "Fluoride removal from aqueous solutions using industrial waste red mud," J. Korean Soc. Agric. Eng., 55(3), 35-40(2013). https://doi.org/10.5389/KSAE.2013.55.3.035
  21. Kang, k., Um, B. H., Kim, Y. K. and Park, S. J., "Applicability assessment of acid treated red mud as adsorbent material for removal of six-valent chromium from seawater," J. Korean Soc. Agric. Eng., 55(5), 17-23(2013). https://doi.org/10.5389/KSAE.2013.55.5.017
  22. Kang, K., Park, S. J., Shin, W. S., Um, B. H. and Kim, Y. K., "Removal of synthetic heavy metal($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$) from water using red mud and lime stone," J. Korean Soc. Environ. Eng., 34(8), 566-573(2012). https://doi.org/10.4491/KSEE.2012.34.8.566
  23. Shin, W. S., Kang, K. and Kim, Y. K., "Adsorption characteristics of multi-metal ions by red mud, zeolite, limestone, and oyster shell," Environ. Eng. Res., 19(1), 15-22(2014). https://doi.org/10.4491/eer.2014.19.1.015
  24. Apak, R., Guclu, K. and Turgut, M. H., "Modeling of copper (II), cadmium(II), and lead(II) adsorption on red mud," J. Colloid Interface Sci., 203(1), 122-130(1998). https://doi.org/10.1006/jcis.1998.5457
  25. Shin, W. S., Kang, K., Park, S. J., Um, B. H. and Kim, Y. K., "Application of red mud and oyster shell for the stabillization of heavy metals (Pb, Zn, and Cu) in marine contaminated sediment," J. Korean Soc. Environ. Eng., 34(11), 751-756(2012). https://doi.org/10.4491/KSEE.2012.34.11.751
  26. Ma, M., Lu, Y., Chen, R., Ma, L. and Wang, Y., "Hexavalent chromium removal from water using heat-acid activated red mud," Open J. Appl. Sci., 4, 275-284(2014). https://doi.org/10.4236/ojapps.2014.45027
  27. Park, S. J., Seo, D. I. and Nah, C., "Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites," J. Colloid Interface Sci., 251, 225-229(2002). https://doi.org/10.1006/jcis.2002.8336
  28. Wang, S., Boyjoo, Y., Choueib, A. and Zhu, Z. H., "Removal of dyes from aqueous solution using fly ash and red mud," Water Res., 39, 129-138(2005). https://doi.org/10.1016/j.watres.2004.09.011
  29. Ho, Y. S. and McKay, G., "The sorption of lead(II) ions on peat," Water Res., 33, 578-584(1999). https://doi.org/10.1016/S0043-1354(98)00207-3
  30. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption Processes," Process Biochem., 34(5), 451-465(1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  31. Park, S. J., Kim, J. H., Lee, C. G., Park, J. A., Choi, N. C. and Kim, S. B., "Removal of fluoride using thermally treated activated alumina," J. Korean Soc. Environ. Eng., 32(10), 986-993(2010).
  32. Lin, S. H. and Juang, R. S., "Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review," J. Environ. Manage., 90(3), 1336-1349(2009). https://doi.org/10.1016/j.jenvman.2008.09.003
  33. Kasliwal, P. and Sai, P. S. T., "Enrichment of titanium dioxide in red mud: a kinetic study," Hydrometallurgy., 53, 73-87(1999). https://doi.org/10.1016/S0304-386X(99)00034-1
  34. Viswanathan, N., Sundaram, S. S. and Meenakshi, S., "Removal of fluoride from aqueous solution using protonated chitosan beads," J. Hazard. Mater., 161(1), 423-430(2009). https://doi.org/10.1016/j.jhazmat.2008.03.115
  35. Alagumuthu, G., Vellaisamy, V. and Ramaswamy, V., "Fluoride sorption using cynodon dactylon based activated carbon," Hemijska Industrija, 65, 23-35(2011). https://doi.org/10.2298/HEMIND100712052A
  36. Meenakshi, S. and Viswanathan, N., "Identification of selective ion-exchange resin for fluoride sorption," J. Colloid Interface Sci., 308, 438-450(2007). https://doi.org/10.1016/j.jcis.2006.12.032
  37. Edzwald, J., "Adsorption of organic compounds by activated carbon. In Water Quality & Treatment: A Handbook on Drinking Water," 6th ed. American Water Works Association(2011).
  38. You, H. N., Kam, S. K. and Lee. M. G., "Preparation of PVS-$Al(OH)_3$ beads immobilized $Al(OH)_3$ with PVC and their adsorption characteristics for fluoride ions from aqueous solution," J. Environ. Sci. Intern., 23(5), 887-893(2014). https://doi.org/10.5322/JESI.2014.5.887

Cited by

  1. Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes vol.32, pp.6, 2018, https://doi.org/10.11001/jksww.2018.32.6.487