• 제목/요약/키워드: remotely piloted vehicle

검색결과 18건 처리시간 0.029초

원격조종 비행체의 이상허용 제어 (Fault tolerant control for remotely piloted vehicle)

  • 김대우;손원기;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF

무인항공기의 지상 및 기상 제어 시스템 개발 (The development of ground and airborne control system for remotely piloted vehicle)

  • 김영철;이윤생;김승주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.361-366
    • /
    • 1991
  • A ground and airborne control system for remotely piloted vehicle (RPV) is described. 1) Ground control system 2) airborne control system 3) the method of measuring aircraft attitude and heading 4) autopilot 5) the method of treating emergency status 6) the method of transmitting and receiving communication data 7) the method of displaying aircraft status 8) the characteristics of the aircraft control system are discussed in some detail.

  • PDF

무인항공기 안전운용을 위한 항공안전법 개정방향에 대한 연구 (Study on Revision of Aviation Safety act for RPAS)

  • 홍혜정;한재현
    • 항공우주정책ㆍ법학회지
    • /
    • 제35권3호
    • /
    • pp.65-93
    • /
    • 2020
  • 정보통신기술 발전과 함께 4차 산업혁명 시대에 돌입하면서 신성장 산업으로 무인항공기 산업이 주목받기 시작했다. 소형 드론에서부터 대형 무인항공기까지 규모와 비행 공역의 범위도 다양해지면서 선진국(미국, 유럽)은 유인항공기와 무인항공기의 통합 운용에 대한 계획을 수립하고 있다. 또한, ICAO에서는 무인항공기의 국제기준 및 권고사항 수립을 하기 위해 관련 부속서 개정 작업을 수행하고 있다. 우리나라도 앞으로 도래할 유인항공기와 무인항공기의 통합 운영에 대비가 필요하여 이를 위해 무인항공기 안전운항에 대한 국내 제도 현황을 검토하고 정비해야 한다. 본 연구는 ICAO에서 논의하고 있는 원격조종항공기시스템(Remotely Piloted Aircraft System; RPAS) 관련 부속서의 개정사항들에 대해 분석하고 기존의 항공안전법과 비교하여 무인항공기 안전운항을 위한 항공안전법의 개정방향을 제시하였다.

불확실성을 고려한 시스템에서의 복합형 이상검출 및 격리 (Hybrid fault detection and isolation for uncertainty system)

  • 유호준;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1432-1435
    • /
    • 1997
  • This paper proposes a fault detection and isolation metho by combining the parameter estimation method[4] with the observer method[2] to use merits of both methods. To verify the performance of the method proposed some simulations applied to remotely piloted vehicle are performed.

  • PDF

원격조종항공기 드론 조종기모드 표준화 연구 : 드론 조종기모드 선호도를 중심으로 (A Study on Standardization on the Flight Controller Mode in Remotely Piloted Aircraft Drone : Focused on Drone Controller Mode Preference)

  • 박원태
    • 산업경영시스템학회지
    • /
    • 제42권4호
    • /
    • pp.69-75
    • /
    • 2019
  • Remotely Piloted Aircraft (RPA) controls as a type of unmanned aerial vehicle (drone) is growing rapidly and its flight controller stick disposition is required standardization. We should standardize RPA drone flight control disposition because the flight pilot of RPA is hard to be trained so the flight controller stick differences impairs safety and wastes time and effort of flight controller industry. So this study researches the on-going standardization of RPA drone flight control disposition in Korea and foreign countries. Also this paper analyzes and researches of expert about RPA drone flight controller function and application of flight control mode. I accomplished expert research about standardization plan of unmanned flight control mode and confirm the necessity. Nowadays mode1 and 2 are mostly used in Korea so I carried out preference investigation for two modes. There were 4 preferences choices of RPA drone control mode necessity (importance) and recommendation of standardization modes. They answered that necessity of standardization is important considering pilot training, flight safety and positive development of drone industry. The result of standardization mode preference is that they prefer mode 2 (drone maker 86%, training facilities and research facilities 58%, government bureau 60%). Overall preference result shows that mode 1 24%, mode 1&2 16%, mode 2 60%. So they preferred mode 2 by 60%. The differences between two modes are the direction of throttle and pitch. Direction of throttle and pitch operate opposite way. They prefer mode 2 because mode 2 has similarities of manned flight control mode. Significance of this study is that it showed the necessity of standardization and flight control preference in a quantitative way. It will help drone standardization in related industries and development direction near future.

Design and Implementation of UAV's Autopilot Controller

  • Lee, Jeong-Hwan;Lee, Ki-Sung;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.52-56
    • /
    • 2004
  • Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft by inputted program in advance or artificial intelligence. In this study Aileron and Elevator are used to control the movement of airplane for horizontal and vertical flights about its longitudinal and lateral axis. In an introduction, the drone was linearly modeled by extracting aerodynamic parameter through flight test and simulation, lift and drag coefficient corresponding to angle of attack, changes of pitching moment coefficient. In the main subject, the flight simulation was performed after constructing hardware using TMS320F2812 from TI company and PID with lateral and longitudinal controller for horizontal and vertical flights. Flying characteristics of two system were estimated and compared through real flight test with hardware equipped algorithm and adaptive algorithm that was applied to consider external factors such as turbulence. In conclusion the control performance of the controller with proposed algorithm was streamlined at lateral and longitudinal controller respectively, we will discuss guidance command to pass way point.

  • PDF

GPS를 이용한 무인항공기의 항법장치 설계 (Navigation Computer Design of RPV Uusing GPS)

  • 선병찬;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.308-313
    • /
    • 1993
  • In this paper, the navigation computer design of RPV(remotely piloted vehicle) using GPS is investigated, and its hardware and software structures are described. The proposed hardware adopts the common PC configuration by using 5016A micro PC card and software is divided into several modules such as navigation module, guidance module and control module, etc. The performance of the navigation computer is verified through PILS(process in the loop simulation).

  • PDF

근거리 원격탐색용 휴대용 무인기의 구성에 관한 연구 (Development of a Portable RPV for Short-range Operations)

  • 박주원
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.227-232
    • /
    • 2001
  • IPresented is a small and handy remotely piloted vehicle(RPV) that can be used for military and non-military surveillance operations. The RPV is equipped with an on-board high resolution color camera to transmit the analog video images and on-board electronics to provide real-time flight information to the pilot, thereby enabling him/her to remotely pilot within the range of 5 km radius. This paper describes the RPV system including its design, manufacturing and flight test results which manifest the stability of on-board mission and flight equipment as well as the remote piloting capability. A future plan for necessary improvements identified from the flight tests are also discussed.

  • PDF

스마트무인기의 공역체계 내 운용에 관한 연구 (A Study on Operability of Smart UAV in the NAS)

  • 김도현;김중욱
    • 한국항공운항학회지
    • /
    • 제19권1호
    • /
    • pp.101-107
    • /
    • 2011
  • A UAV is defined as a powered, aerial vehicle that does not carry a human operator, and can fly autonomously or be piloted remotely. UAV operations have increased dramatically during the past several years in both the public and private sectors. The utilization of UAV and the activities of diverse widening, now the challenge was how to operate and integrate UAV safely in the NAS. The purpose of this study is to look around the trend for operability of Smart UAV in the NAS and to provide its implications and the future direction of integrated operating airspace focusing on U.S. where R&D and demand of UAV are the most in the world.

동적인 위협이 존재하는 전장에서의 무인 항공기 지역경로계획 (A Local Path Planning for Unmanned Aerial Vehicle on the Battlefield of Dynamic Threats)

  • 김기태;남용근;조성진
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.39-46
    • /
    • 2012
  • An unmanned aerial vehicle (UAV) is a powered aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or non-lethal payload. An UAV is very important weapon system and is currently being employed in many military missions (surveillance, reconnaissance, communication relay, targeting, strike, etc.) in the war. To accomplish UAV's missions, guarantee of survivability should be preceded. The main objective of this study is a local path planning to maximize survivability for UAV on the battlefield of dynamic threats (obstacles, surface-to-air missiles, radar etc.). A local path planning is capable of producing a new path in response to environmental changes. This study suggests a $Smart$ $A^*$ (Smart A-star) algorithm for local path planning. The local path planned by $Smart$ $A^*$ algorithm is compared with the results of existing algorithms ($A^*$ $Replanner$, $D^*$) and evaluated performance of $Smart$ $A^*$ algorithm. The result of suggested algorithm gives the better solutions when compared with existing algorithms.