• 제목/요약/키워드: remaining life

검색결과 728건 처리시간 0.023초

A methodology for remaining life prediction of concrete structural components accounting for tension softening effect

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.;Gopinath, Smitha
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.261-277
    • /
    • 2008
  • This paper presents methodologies for remaining life prediction of plain concrete structural components considering tension softening effect. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. A methodology to account for tension softening effects in the computation of SIF and remaining life prediction of concrete structural components has been presented. The tension softening effects has been represented by using any one of the models mentioned above. Numerical studies have been conducted on three point bending concrete structural component under constant amplitude loading. Remaining life has been predicted for different loading cases and for various tension softening models. The predicted values have been compared with the corresponding experimental observations. It is observed that the predicted life using bi-linear model and power curve model is in close agreement with the experimental values. Parametric studies on remaining life prediction have also been conducted by using modified bilinear model. A suitable value for constant of modified bilinear model is suggested based on parametric studies.

Fracture analysis and remaining life prediction of aluminium alloy 2014A plate panels with concentric stiffeners under fatigue loading

  • Murthy, A. Ramachandra;Mathew, Rakhi Sara;Palani, G.S.;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.681-702
    • /
    • 2015
  • Fracture analysis and remaining life prediction has been carried out for aluminium alloy (Al 2014A) plate panels with concentric stiffener by varying sizes and positions under fatigue loading. Tension coupon tests and compact tension tests on 2014A have been carried out to evaluate mechanical properties and crack growth constants. Domain integral technique has been used to compute the Stress intensity factor (SIF) for various cases. Generalized empirical expressions for SIF have been derived for various positions of stiffener and size. From the study, it can be concluded that the remaining life for stiffened panel for particular size and position can be estimated by knowing the remaining life of corresponding unstiffened panel.

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

강교량의 실동피로하에서 잔존수명의 추정 (Estimation of Remaining Service Life of Steel Highway Bridge under Actual Traffic Load)

  • 용환선;정경섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.59-64
    • /
    • 1989
  • On this condition of steel bridge member having a crack, occasionaly it is improssible to measure of stress history and to extract test specimen. Under this situation, tried to estimate remaining service life from statistical data on traffic and existing results of fatigue test without measuring of stress history and fatigue test. The main results are as following (1) Stress history of simple beam estimated from Montecallo simulation method with probabilistic model of traffic can be use to estimate remaining fatigue life instead of measuring of stress history. (2) In such a case measuring of remaining fatigue life at bridge member haying a crack, influences of RMS model and RMC model on fatigue crack growth rate are not differ without difference of applied stress range. (3) Application of cut off method may be overestimate remaining fatigue life.

  • PDF

EMD-CNN-LSTM을 이용한 하이브리드 방식의 리튬 이온 배터리 잔여 수명 예측 (Remaining Useful Life Prediction for Litium-Ion Batteries Using EMD-CNN-LSTM Hybrid Method)

  • 임제영;김동환;노태원;이병국
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.48-55
    • /
    • 2022
  • This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측 (Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference)

  • 노유정
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2401-2406
    • /
    • 2015
  • 배관은 대형기계설비에서 다양한 작동유체를 운반하는데 사용되는데, 대형시스템의 성능을 유지하기 위해서는 부식된 배관의 잔존 수명을 정확히 예측될 필요가 있다. 하지만, 배관 형상, 물성치, 부식률 등 배관의 수명에 영향을 미치는 요인들의 불확실성이 크기 때문에 부식 잔존 수명을 정확히 예측하기 힘들다. 본 연구에서는 통계적인 접근방법인 베이지안 추론법을 이용하여 부식 잔존 수명을 예측하는 방법을 제안하였다. 여기서, 배관의 파손 확률은 베이지안 법칙을 기반으로 시간에 따른 배관 파손 압력에 관한 사전 정보와 실험데이터를 이용하여 계산되고, 부식 잔존 수명은 10%의 파손 확률을 갖는 경과시간으로 계산되었다. 예제에서는 부식에 영향을 미치는 주요인자로부터 10개와 50개의 데이터를 생성하여 배관의 파손 확률 및 배관의 잔존수명을 예측하였으며 가정한 실제 잔존수명과의 비교를 통해 제안한 방법을 검증하였다.

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

잔존수명을 활용한 제조설비의 경제적 감가상각률 추정방안 (A Study on the Estimation of Economic Depreciation Rate on Industrial Property U sing Remianing Life)

  • 오현승;조진형
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.219-224
    • /
    • 2010
  • Depreciation accounting has as its main objective, the recovery of the original cost of plant investment less net salvage, over the estimated useful life of that plant. Accuracy of the whole life technique in meeting this objective depends entirely on the original estimates of service life and net salvages for an account. Where the whole life technique has been used and original estimates prove inaccurate, excessive or deficient accumulations in the depreciation reserve frequently occur. To overcome this, the remaining life technique is suggested to better match the challenges of accelerated technology and competition within the regulated environment. The flexibility of the remaining life technique will allow an even chance to provide a complete recovery of the original cost.

등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템 (Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters)

  • 이승준;고영휘;델리키첼라 칸달라 프라듐나;최우진
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.