DOI QR코드

DOI QR Code

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra (Structural Engineering Research Centre, CSIR, CSIR Campus) ;
  • Palani, G.S. (Structural Engineering Research Centre, CSIR, CSIR Campus) ;
  • Iyer, Nagesh R. (Structural Engineering Research Centre, CSIR, CSIR Campus)
  • Received : 2007.09.27
  • Accepted : 2008.12.17
  • Published : 2009.06.20

Abstract

This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

Keywords

References

  1. Baluch, M.H., Qureshy, A.B. and Azad, A.K. (1987), 'Fatigue crack propagation in plain concrete', SEM/RILEM Intl. Conf. on Fracture of Concrete and Rock, Houston, 80-87
  2. Bazant, Z.P. (1984), 'Size effect in blunt fracture: Concrete, rock, metal', J. Eng. Mech., ASCE, 110(4), 518-535 https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
  3. Bazant, Z.P. (2000), 'Size effect', Int. J. Solids Struct., 37, 69-80 https://doi.org/10.1016/S0020-7683(99)00077-3
  4. Bazant, Z.P. (2002), 'Concrete fracture model: Testing and practice', Eng. Fract. Mech., 69, 165-205 https://doi.org/10.1016/S0013-7944(01)00084-4
  5. Bazant, Z.P. and Kazemi, M.T. (1990), 'Determination of fracture energy, process zone length and brittleness from size effect with application to Rock and concrete', Int. J. Fract., 44, 111-131 https://doi.org/10.1007/BF00047063
  6. Bazant, Z.P. and William F Schell. (1993), 'Fatigue fracture of High strength concrete and size effect', ACI Mater. J., 90(5), 472-478
  7. Bazant, Z.P. and Xu, K. (1991), 'Size effect in fatigue fracture of concrete', ACI Mater. J., 88(4), 390-399
  8. Cedolin, L., Deipoli, S. and Iori, I. (1987), 'Tensile behaviour of concrete', J. Eng. Mech., ASCE, 113(3), 431-449 https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(431)
  9. Du, J., Yon, J.H., Hawkins, N.M. and Kobayashi, A.S. (1990), 'Analysis of the fracture process zone of a propagating concrete crack using moire interferometry in micromechanics of failure of quasi-brittle materials', Elsevier Applied Science, London, 146-155
  10. Figueiras, J.A. and Owen, D.R.J. (1984), 'Nonlinear analysis of reinforced concrete shell structures', Intl Conf on Computer Aided Analysis and Design of Concrete Structures - Part I. Split, Yugoslavia, 509-532
  11. Footer, M.L., Mai, Y.W. and Cotterell, B. (1986), 'Crack growth resistance curves in strain-softening materials', J. Mech. Phys. Solids, 34(6), 593-607 https://doi.org/10.1016/0022-5096(86)90039-6
  12. Gopalaratnam, V.S. and Shah, S.P. (1985), 'Softening response of plain concrete in direct tension', ACI J., 82(3), 310-323
  13. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), 'Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements', Cement Concrete Compos., 6, 773-782 https://doi.org/10.1016/0008-8846(76)90007-7
  14. Hordijk, D.A. (1991), Local Approach to Fatigue of Concrete, Ph.D Thesis, Technical University of Delft
  15. Ingraffea, A.R. (1977), 'Discrete fracture propagation in rock: Laboratory tests and finite element analysis', Ph.D. Dissertation, University of Colorado, Boulder
  16. James H. Hanson, Anthony R. Ingraffea (2003), 'Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, Two-parameter and frictions crack models', Eng. Fract. Mech. 70, 1015-1027 https://doi.org/10.1016/S0013-7944(02)00163-7
  17. Karihaloo, B.L., Abdalla, A.M. and Xiao, Q.X. (2006), 'Deterministic size effect in the strength of cracked concrete structures', Cement Concrete Res., 36(1), 171-188 https://doi.org/10.1016/j.cemconres.2005.04.007
  18. Liaw, B.M., Jeang, F.L., Du, J.J., Hawkins, N.M. and Kobayashi, A.S. (1990), 'Improved nonlinear model for concrete fracture', J. Eng. Mech., ASCE, 116(2), 429-445 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(429)
  19. Prasad, M.V.K.V. and Krishnamoorthy, C.S. (2002), 'Computational model for discrete crack growth in plain and reinforced concrete', Comput. Meth. Appl. Mech. Eng., 191, 2699-2725 https://doi.org/10.1016/S0045-7825(02)00210-4
  20. Raghu Prasad, B.K. and Vidya Sagar, R. (2006), 'Numerical modelling of fracture and size effect in plain concrete', J. Inst. Eng., 86, 182-186
  21. Ramsamooj, D.V. (1994), 'Prediction of fatigue life of plain concrete beams from fracture tests', J. Test. Eval., 22(3), 183-194 https://doi.org/10.1520/JTE11810J
  22. Reinhardt, H.W. (1985), 'Crack softening zone in plain concrete under static loading', Cement Concrete Compos., 15, 42-52 https://doi.org/10.1016/0008-8846(85)90007-9
  23. RILEM Committee on Fracture Mechanics of Concrete – Test Methods (1990), 'Size effect Method for Determining Fracture energy and process zone size of concrete', Mater. Struct., 23, 461-465 https://doi.org/10.1007/BF02472030
  24. Roelfstra, R.E. and Wittmann, F.H. (1986), 'A numerical method to link strain softening with fracture in concrete fracture toughness and fracture energy in concrete', Elsevier Science, Amsterdam, 163-175
  25. Shah, S.P. and Swartz, S.E. (1995), Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and other Quasi-brittle Material, John Wiley & Sons, Inc., New York
  26. Slowik, V., Beate Villmann, B., Bretschneider, N. and Villmann T. (2006), 'Computational aspects of inverse analyses for determining softening curves of concrete', Comput. Meth. Appl. Mech. Eng., 195, 7223-7236 https://doi.org/10.1016/j.cma.2005.04.021
  27. Stuart, E.S. (1982), 'Crack growth and fracture in plain concrete-Static versus fatigue loading', Proc. Fatigue of Concrete Structures, SP-75, 3, ACI, Detroit, 47-68
  28. Subramaniam, V.K., Neil E.F., Popovics, S.J. and Shah, S.P. (2000), 'Crack propagation in flexural fatigue of concrete', J. Eng. Mech., 126(9), 891-898 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(891)
  29. Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, 2nd ed., Paris Productions, St. Louis. MO
  30. Takashi Matsumoto and Victor C Li. (1999), 'Fatigue life analysis of fiber reinforced concrete with a fracture mechanics based model', Cement Concrete Compos., 21, 249-261 https://doi.org/10.1016/S0958-9465(99)00004-9
  31. Thomas C Gasser and Gerhard A Holzapfel (2005), 'Modeling 3D crack propagation in unreinforced concrete using PUFEM', Comput. Meth. Appl. Mech. Eng., 194, 2859-2896 https://doi.org/10.1016/j.cma.2004.07.025
  32. Toumi Bascos, A. and Turatsinze, A. (1998), 'Crack propagation in concrete subjected to flexural cyclic loading', Mater. Struct., 31, 451-458 https://doi.org/10.1007/BF02480468
  33. Wu, Z., Yang, S., Hu, X. and Zheng, J. (2006), 'An analytical model to predict the effective fracture toughness of concrete for three-point bending notched beams', Eng. Fract. Mech., 73(15), 2166-2191 https://doi.org/10.1016/j.engfracmech.2006.04.001
  34. Yi, S.T., Kim, M.S., Kim, J.K. and Kim, J.H.J. (2007), 'Effect of specimen size on flexural compressive strength of reinforced concrete members', Cement Concrete Compos., 29, 230-240 https://doi.org/10.1016/j.cemconcomp.2006.11.005

Cited by

  1. Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.169