• Title/Summary/Keyword: reliable transmission

Search Result 638, Processing Time 0.031 seconds

Efficient Energy and Position Aware Routing Protocol for Wireless Sensor Networks

  • Shivalingagowda, Chaya;Jayasree, P.V.Y;Sah, Dinesh.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1929-1950
    • /
    • 2020
  • Reliable and secure data transmission in the application environment assisted by the wireless sensor network is one of the major challenges. Problem like blind forwarding and data inaccessibility affect the efficiency of overall infrastructure performance. This paper proposes routing protocol for forwarding and error recovery during packet loss. The same is achieved by energy and hops distance-based formulation of the routing mechanism. The reachability of the intermediate node to the source node is the major factor that helps in improving the lifetime of the network. On the other hand, intelligent hop selection increases the reliability over continuous data transmission. The number of hop count is factor of hop weight and available energy of the node. The comparison over the previous state of the art using QualNet-7.4 network simulator shows the effectiveness of proposed work in terms of overall energy conservation of network and reliable data delivery. The simulation results also show the elimination of blind forwarding and data inaccessibility.

Link Quality Estimation in Static Wireless Networks with High Traffic Load

  • Tran, Anh Tai;Mai, Dinh Duong;Kim, Myung Kyun
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.370-383
    • /
    • 2015
  • Effective link quality estimation is a vital issue for reliable routing in wireless networks. This paper studies the performance of expected transmission count (ETX) under different traffic loads. Although ETX shows good performance under light load, its performance gets significantly worse when the traffic load is high. A broadcast packet storm due to new route discoveries severely affects the link ETX values under high traffic load, which makes it difficult to find a good path. This paper presents the design and implementation of a variation of ETX called high load - ETX (HETX), which reduces the impact of route request broadcast packets to link metric values under high load. We also propose a reliable routing protocol using link quality metrics, which is called link quality distance vector (LQDV). We conducted the evaluation of the performance of three metrics - HETX, ETX and minimum hop-count. The simulation results show that HETX improves the average route throughput by up to 25% over ETX under high traffic load. Minimum hop-count has poor performance compared with both HETX and ETX at all of the different traffic loads. Under light load, HETX and ETX show the same performance.

SLC : Reliable Link-layer protocol for wireless Sensor Networks (무선 센서 네트워크의 전송 신뢰성을 제공하는 링크계층 프로토콜)

  • Kim, Nam-Gon;Seok, Seung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.578-580
    • /
    • 2009
  • Wireless Sensor Networks(WSNs) has been used for various applications. It is optimized to low power operation than various function and transmission reliability because of limited power by batteries. but it is necessary to guarantee of reliability for using exact data for more diversity purpose. In WSNs environment composed by multi-hop, it is guarantee to end-to-end transmission reliability based hop-by-hop reliability. however, IEEE 802.15.4 standard is not consider link-layer reliability. in this paper, we propose energy efficient Reliable Link-layer Protocol for Wireless Sensor Networks.

  • PDF

Timer-based Buffer Management for Reliable Multicast (신뢰적 멀티캐스트를 위한 타이머 기반 버퍼 관리)

  • 안상현;김영민;권영호
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.513-519
    • /
    • 2003
  • In order to deliver multicast traffic efficiently, multicast routing and reliable transmission mechanisms are required. The reliable delivery implies that lost packets must be retransmitted, which in turn requires that transmitted packets be stored in a retransmission buffer. Therefore how to manage a retransmission buffer is important and, in this paper, we try to solve the problem of how many packets should be maintained in the buffer. Our proposed scheme, the timer-based buffer management (TBM), maintains only necessary amount of buffer based on the timer value calculated from the NAKs between the replier and receivers on a multicast tree and can adjust to the dynamic network conditions. By performing simulations, we show that TBM manages the buffer efficiently regardless of the error situation, network size, and so on.

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.

COMTROL SIGNAL DISTRIBUTION WITH OPTICAL FIBER

  • Wu, Yuying;Ikeda, Hiroaki;Fukuma, Kohshi;Yoshida, Hirofumi;Tsuchiya, Etsuo;Shinohara, Shigenobu;Nishimura, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1801-1804
    • /
    • 1991
  • Described is a new type of control signal transmission system in which an optical fiber is used in place of metal wire cables. This optical transmission system is reliable against EMI and also eliminates the frequency band limitation on the metal wire cables. Since the Z80 CPU is used to distribute the instructions, many tasks can be carried out very easily, and many errors can be avoided. Although an experiment was carried out for 4 bit binary data, the number of bits can be increased to 6 or more without any degradation in reliability. Thus, a variety of applications can be expected to be actualized with this control signal transmission system.

  • PDF

Performance Analysis on Wireless Sensor Network using LDPC Codes over Node-to-node Interference

  • Choi, Sang-Min;Moon, Byung-Hyun
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Wireless sensor networks(WSN) technology has various applications such as surveillance and information gathering in the uncontrollable area of human. One of major issues in WSN is the research for reducing the energy consumption and reliability of data. A system with forward error correction(FEC) can provide an objective reliability while using less transmission power than a system without FEC. In this paper, we propose to use LDPC codes of various code rate(0.53, 0.81, 0.91) for FEC for WSN. Also, we considered node-to-node interference in addition to AWGN channel. The proposed system has not only high reliable data transmission at low SNR, but also reduced transmission power usage.

  • PDF

Fault Location Identification Using Software Fault Tolerance Technique (소프트웨어 Fault Tolerance를 이용한 고장점 표정)

  • Kim Wonha;Jang Yong-Won;Han Seung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • The management of technological systems will become increasingly complex. Safe and reliable software operation is a significant requirement for many types of system. So, with software fault tolerance, we want to prevent failures by tolerating faults whose occurrences are known when errors are detected. This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line using software fault tolerance technique. To find the fault location of transmission line, we have to solve the 3rd order transmission line equation. A significant improvement in the identification of the fault location was accomplished using the N-Version Programming (NVP) design paradigm. The delivered new algorithm has been tested with the simulation data obtained from the versatile EMTP simulator.

Fault Phase Selection Algorithm using Unit Vector of Sequence Voltages for Transmission Line Protection (대칭분 전압 단위 벡터를 이용한 송전선로 보호용 고장상 선택 알고리즘)

  • Lee, Myeong-Su;Lee, Jae-Gyu;Kim, Su-Nam;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.460-466
    • /
    • 2002
  • A reliable fault phase selection algorithm plays a very important role in transmission line protection, Particularly in Extra High Voltage (EHV) networks. The conventional fault phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and select the fault phase in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can select the accurately fault phase using the sum of unit vectors which are calculated by positive-sequence voltage and negative-sequence voltage.

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500kV Substations

  • Ju Hyung-Jun;Lee Heung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.366-370
    • /
    • 2005
  • To meet increasing power demand, 500 kV power systems are under consideration in the regions of some Middle Asian countries. As the power system voltage becomes higher, the cost for the power system insulation increases significantly. 500 kV transmission systems will become the basis of a region's power system and they require much higher system reliability. Consequently, by the methods of limiting overvoltages effectively, a reasonable insulation design and coordination must be accomplished. In particular, the Substations must be constructed to be of outdoor type. In order to determine the various factors for the insulation design, the EMTP (Electro-magnetic transient program) is used for the magnification of transient phenomena of the 500 kV systems in the planned network. In this paper, we will explain the calculation results of lightning overvoltages by the EMTP for lightning protection design for the 500 kV substations. To obtain reliable results, the multi-story tower model and EMTP/TACS model are introduced for the simulation of dynamic arc characteristics.